Question
Mathematics Question on applications of integrals
If sin(πcosθ)=cos(πsinθ), then sin2θ equals
A
±43
B
±2
C
±31
D
±21
Answer
±43
Explanation
Solution
sin(πcosθ)=cos(πsinθ)
⇒cos(2π−πcosθ)=cos(πsinθ)
⇒2π−πcosθ−±πsinθ
⇒2π=πcosθ±πsinθ
21=cosθ±sinθ
Squaring both sides, we get
41=cos2θ+sin2θ±2sinθcosθ
⇒41=1±2sinθcosθ
⇒41−1±sin2θ
⇒−43=±sin2θ⇒sin2θ±43