Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

If sin (θϕ)=nsin(θϕ),n1,\left(\theta-\phi\right) = n \, sin (\theta - \phi),n \ne1, then the value of tanθtanϕ\frac{\tan\theta}{\tan\phi} is equal to

A

nn1\frac{n}{n-1}

B

n+1n1\frac{n+1}{n-1}

C

n1n\frac{n}{1-n}

D

n1n+1\frac{n-1}{n+1}

Answer

n+1n1\frac{n+1}{n-1}

Explanation

Solution

sin(θ+ϕ)=nsin(θϕ)\sin (\theta+\phi)=n \sin (\theta-\phi)
sin(θ+ϕ)sin(θϕ)=n\Rightarrow \frac{\sin (\theta+\phi)}{\sin (\theta-\phi)}=n
Applying componendo and dividendo, we get
sin(θ+ϕ)+sin(θϕ)sin(θ+ϕ)sin(θϕ)=n+1n1\frac{\sin (\theta+\phi)+\sin (\theta-\phi)}{\sin (\theta+\phi)-\sin (\theta-\phi)}=\frac{n+1}{n-1}
[2sin(θ+ϕ+θϕ2)cos(θ+ϕθ+ϕ2)][2cos(θ+ϕ+θϕ2)sin(θ+ϕθ+ϕ2)]\Rightarrow \frac{\left[2 \sin \left(\frac{\theta+\phi+\theta-\phi}{2}\right) \cos \left(\frac{\theta+\phi-\theta+\phi}{2}\right)\right]}{\left[2 \cos \left(\frac{\theta+\phi+\theta-\phi}{2}\right) \sin \left(\frac{\theta+\phi-\theta+\phi}{2}\right)\right]}
=n+1n1sinθcosϕcosθsinϕ=n+1n1=\frac{n+1}{n-1} \Rightarrow \frac{\sin \theta \cos \phi}{\cos \theta \sin \phi}=\frac{n+1}{n-1}
tanθtanϕ=n+1n1\Rightarrow \frac{\tan \theta}{\tan \phi}=\frac{n+1}{n-1}