Question
Mathematics Question on Properties of Inverse Trigonometric Functions
If sin (θ−ϕ)=nsin(θ−ϕ),n=1, then the value of tanϕtanθ is equal to
A
n−1n
B
n−1n+1
C
1−nn
D
n+1n−1
Answer
n−1n+1
Explanation
Solution
sin(θ+ϕ)=nsin(θ−ϕ)
⇒sin(θ−ϕ)sin(θ+ϕ)=n
Applying componendo and dividendo, we get
sin(θ+ϕ)−sin(θ−ϕ)sin(θ+ϕ)+sin(θ−ϕ)=n−1n+1
⇒[2cos(2θ+ϕ+θ−ϕ)sin(2θ+ϕ−θ+ϕ)][2sin(2θ+ϕ+θ−ϕ)cos(2θ+ϕ−θ+ϕ)]
=n−1n+1⇒cosθsinϕsinθcosϕ=n−1n+1
⇒tanϕtanθ=n−1n+1