Solveeit Logo

Question

Question: If \[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] , \[n \ne 1\], t...

If sin(θ+ϕ)=nsin(θϕ)\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right) , n1n \ne 1, then the value of tanθtanϕ\dfrac{{\tan \theta }}{{\tan \phi }} is:
A) nn1\dfrac{n}{{n - 1}}
B) n+1n1\dfrac{{n + 1}}{{n - 1}}
C) n1n\dfrac{n}{{1 - n}}
D) 1+n1n\dfrac{{1 + n}}{{1 - n}}

Explanation

Solution

Here we will use the formula of sin(A)+sin(B)=2sin(A + B2)cos(A - B2)\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right) and sin(A)sin(B)=2cos(A + B2)sin(A - B2)\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right) where A{\text{A}} and B{\text{B}} are any variables.

Complete step-by-step solution:
Step 1: It is given that
sin(θ+ϕ)=nsin(θϕ)\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right) where
n1n \ne 1. We will apply the Componendo-Dividendo rule which states that if
aa, bb, cc and dd are four variables and
a+bab=c+dcd\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}} , then by applying this rule we will get the expression as
(a+b)+(ab)(ab)(ab)=(c+d)+(cd)(cd)(cd)\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}. We can write the given expression as below:
sin(θ+ϕ)sin(θϕ)=n\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n
By applying this rule in the given expression, we get:
sin(θ+ϕ)+sin(θϕ)sin(θϕ)sin(θϕ)=n+1n1\Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}} ………………………… (1)
Step 2: By applying the formula of
sin(A)+sin(B)=2sin(A + B2)cos(A - B2)\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right), in the above expression (1), we get:
2sin(θ+ϕ+θϕ2)cos(θ+ϕθ+ϕ2)2cos(θ+ϕ+θϕ2)sin(θ+ϕθ+ϕ2)=n+1n1\Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}
By simplifying the terms inside the brackets, we get:
2sin(2θ2)cos(2ϕ2)2cos(2θ2)sin(2ϕ2)=n+1n1\Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}
By simplifying the brackets of the above expression, we get:
2sin(θ)cos(ϕ)2cos(θ)sin(ϕ)=n+1n1\Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}
By eliminating
22from the LHS side of the above expression we get:
sin(θ)cos(ϕ)cos(θ)sin(ϕ)=n+1n1\Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}} …………………………. (2)
Step 3: Now, as we know that
sinacosa=tana\dfrac{{\sin a}}{{\cos a}} = \tan a, so by comparing it with the above expression (2), we get:
tanθtanϕ=n+1n1\Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}

\because Option B is correct.

Note: Students need to remember some basic formulas sinAcosB{\text{sinAcosB}} for solving these types of questions easily. Some of them are mentioned below:
sin(A + B)=sinA cosB + cosA sinB\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}
sin(A - B)=sinA cosB - cosA sinB\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}
sin(A)+sin(B)=2sin(A + B2)cos(A - B2)\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)
sin(A)sin(B)=2cos(A + B2)sin(A - B2)\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if aa, bb, cc and dd are four numbers such that
bb and dd are non-zero and ab=cd\dfrac{a}{b} = \dfrac{c}{d}, then the following holds as below:
Componendo: a+bb=c+dd\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}
Dividendo: abb=cdd\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}
For kabk \ne \dfrac{a}{b}, a+kbakb=c+kdckd\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}
For kbak \ne \dfrac{{ - b}}{a}, ab=a+kcb+kd\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}