Solveeit Logo

Question

Question: If \(\sin \left( \theta +\alpha \right)=a\) and \(\sin \left( \theta +\beta \right)=b\) , \(\left( \...

If sin(θ+α)=a\sin \left( \theta +\alpha \right)=a and sin(θ+β)=b\sin \left( \theta +\beta \right)=b , ((0<α,β,θ<π2))\left( \left( 0<\alpha ,\beta ,\theta <\dfrac{\pi }{2} \right) \right) then 2cos2(αβ)14abcos(αβ)2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right) is
(A)1a2b21-{{a}^{2}}-{{b}^{2}}
(B)12a22b21-2{{a}^{2}}-2{{b}^{2}}
(C)2+a2+b22+{{a}^{2}}+{{b}^{2}}
(D)2a2b22-{{a}^{2}}-{{b}^{2}}

Explanation

Solution

For answering this question we will first find the value of cos(θ+α)\cos \left( \theta +\alpha \right) and cos(θ+β)\cos \left( \theta +\beta \right) using the values of sin(θ+α)=a\sin \left( \theta +\alpha \right)=a and sin(θ+β)=b\sin \left( \theta +\beta \right)=b from the formulae cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x}. And after that we will find the value of cos(αβ)=cos[(θ+α)(θ+β)]\cos \left( \alpha -\beta \right)=\cos \left[ \left( \theta +\alpha \right)-\left( \theta +\beta \right) \right] using cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B and substitute it in the equation we have 2cos2(αβ)14abcos(αβ)2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right) and simplify it.

Complete step by step answer:
From the question we have that the value of sin(θ+α)=a\sin \left( \theta +\alpha \right)=a and sin(θ+β)=b\sin \left( \theta +\beta \right)=b.
Since we know that cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x} we can say that the value of cos(θ+α)=1a2\cos \left( \theta +\alpha \right)=\sqrt{1-{{a}^{2}}} andcos(θ+β)=1b2\cos \left( \theta +\beta \right)=\sqrt{1-{{b}^{2}}} .
Here we need the value of cos(αβ)\cos \left( \alpha -\beta \right) in order to answer the question. We can write αβ\alpha -\beta as (θ+α)(θ+β)\left( \theta +\alpha \right)-\left( \theta +\beta \right) by adding and subtracting θ\theta . Since we know that cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B . We can have the value of cos(αβ)\cos \left( \alpha -\beta \right) as cos(αβ)=cos[(θ+α)(θ+β)]=cos(θ+α)cos(θ+β)+sin(θ+α)sin(θ+β)\cos \left( \alpha -\beta \right)=\cos \left[ \left( \theta +\alpha \right)-\left( \theta +\beta \right) \right]=\cos \left( \theta +\alpha \right)\cos \left( \theta +\beta \right)+\sin \left( \theta +\alpha \right)\sin \left( \theta +\beta \right) .
By substituting the respective values we will have 1a21b2+ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab .
By substituting this value cos(αβ)=1a21b2+ab\cos \left( \alpha -\beta \right)=\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab in the place of the required value we will get 2cos2(αβ)14abcos(αβ)=2(1a21b2+ab)214ab(1a21b2+ab)2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=2{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right) .
By simplifying this equation we will have 2(1a21b2+ab)214a2b24ab1a21b22{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} .
Since we know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab by using this we will have 2((1a2)(1b2)+2ab(1a21b2)+a2b2)14a2b24ab1a21b22\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right)+2ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \right)+{{a}^{2}}{{b}^{2}} \right)-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} .
By simplifying this we will have 2((1a2)(1b2))+2a2b2+4ab1a21b214a2b24ab1a21b2 2((1a2)(1b2))12a2b2 \begin{aligned} & 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)+2{{a}^{2}}{{b}^{2}}+4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \\\ & \Rightarrow 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}} \\\ \end{aligned} .
By expanding this we will have 2((1a2)(1b2))12a2b22(1a2b2+a2b2)12a2b22\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}}\Rightarrow 2\left( 1-{{a}^{2}}-{{b}^{2}}+{{a}^{2}}{{b}^{2}} \right)-1-2{{a}^{2}}{{b}^{2}}.
By expanding and simplifying this we will have 22a22b2+2a2b212a2b2=12a22b22-2{{a}^{2}}-2{{b}^{2}}+2{{a}^{2}}{{b}^{2}}-1-2{{a}^{2}}{{b}^{2}}=1-2{{a}^{2}}-2{{b}^{2}}.
Hence we end up with the value that 2cos2(αβ)14abcos(αβ)=12a22b22{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}} .
So now we have a conclusion that when sin(θ+α)=a\sin \left( \theta +\alpha \right)=a and sin(θ+β)=b\sin \left( \theta +\beta \right)=b , then 2cos2(αβ)14abcos(αβ)=12a22b22{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}}.

So, the correct answer is “Option B”.

Note: While answering of questions of this type we should remember that the formula is cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B not cos(AB)=cosAcosBsinAsinB\cos \left( A-B \right)=\cos A\cos B-\sin A\sin B . If we use this we will end up having a wrong answer.