Solveeit Logo

Question

Question: If \(\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right)\) , prove that \(\cos \...

If sin(πcosθ)=cos(πsinθ)\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right) , prove that cos(θπ4)=122\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{2\sqrt{2}}.

Explanation

Solution

For answering this question we will first simplify the equation we have sin(πcosθ)=cos(πsinθ)\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right) using cosx=sin(π2x)\cos x=\sin \left( \dfrac{\pi }{2}-x \right) . After that we will use the value we have and find the value of cos(θπ4)\cos \left( \theta -\dfrac{\pi }{4} \right) using cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B .

Complete step by step answer:
From the question we have that sin(πcosθ)=cos(πsinθ)\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right) . Since we know that the value of cosx\cos x in terms of sinx\sin x is given by cosx=sin(π2x)\cos x=\sin \left( \dfrac{\pi }{2}-x \right) . By using this we will have cos(πsinθ)=sin(π2πsinθ)\cos \left( \pi \sin \theta \right)=\sin \left( \dfrac{\pi }{2}-\pi \sin \theta \right) .
Now by using this value in the equation we have we will have sin(πcosθ)=sin(π2πsinθ)\sin \left( \pi \cos \theta \right)=\sin \left( \dfrac{\pi }{2}-\pi \sin \theta \right) .
By cancelling out sin\sin on both sides we will have πcosθ=π2πsinθ\pi \cos \theta =\dfrac{\pi }{2}-\pi \sin \theta .
By cancelling out π\pi on both sides we will have cosθ=12sinθ\cos \theta =\dfrac{1}{2}-\sin \theta .
By transferring sinθ\sin \theta from R.H.S to L.H.S we will have cosθ+sinθ=12\cos \theta +\sin \theta =\dfrac{1}{2} .
By multiplying and dividing 2\sqrt{2} in L.H.S we will have 2(12cosθ+12sinθ)=12\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta \right)=\dfrac{1}{2} .
By transferring 2\sqrt{2} from L.H.S to R.H.S we will have (12cosθ+12sinθ)=122\left( \dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta \right)=\dfrac{1}{2\sqrt{2}} .
Since we know that we need to prove that cos(θπ4)=122\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{2\sqrt{2}} we have cos(θπ4)\cos \left( \theta -\dfrac{\pi }{4} \right) on the L.H.S we know that cos(θπ4)=12cosθ+12sinθ\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta from the expansion of cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B . Since we know that cosπ4=12\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} and sinπ4=12\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} .
By comparing the both equations cos(θπ4)=12cosθ+12sinθ\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta and (12cosθ+12sinθ)=122\left( \dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta \right)=\dfrac{1}{2\sqrt{2}} we can say that cos(θπ4)=122\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{2\sqrt{2}}.

Hence, it is proved that when sin(πcosθ)=cos(πsinθ)\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right) the value of cos(θπ4)\cos \left( \theta -\dfrac{\pi }{4} \right) is given as cos(θπ4)=122\cos \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{1}{2\sqrt{2}}.

Note: We can also prove this in another way by using the inverse trigonometric functions. We can do that by applying sin1{{\sin }^{-1}} on both sides of the equation we have sin(πcosθ)=cos(πsinθ)\sin \left( \pi \cos \theta \right)=\cos \left( \pi \sin \theta \right).
By applying that we will have sin1sin(πcosθ)=sin1cos(πsinθ)πcosθ=π2πsinθ{{\sin }^{-1}}\sin \left( \pi \cos \theta \right)={{\sin }^{-1}}\cos \left( \pi \sin \theta \right)\Rightarrow \pi \cos \theta =\dfrac{\pi }{2}-\pi \sin \theta .
Since we know that sin1sinx=x{{\sin }^{-1}}\sin x=x and sin1cosx=π2x{{\sin }^{-1}}\cos x=\dfrac{\pi }{2}-x . After this the further simplifications and end up conclusion will be the same as we have done before.