Solveeit Logo

Question

Question: If \[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\] , then which ...

If sin(πcosθ)=cos(πsinθ)\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right) , then which of the following is correct.
(a)cosθ=322 (b)cos(θπ2)=122 (c)cos(θπ4)=122 (d)cos(θ+π4)=122  \left( a \right)\cos \theta = \dfrac{3}{{2\sqrt 2 }} \\\ \left( b \right)\cos \left( {\theta - \dfrac{\pi }{2}} \right) = \dfrac{1}{{2\sqrt 2 }} \\\ \left( c \right)\cos \left( {\theta - \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }} \\\ \left( d \right)\cos \left( {\theta + \dfrac{\pi }{4}} \right) = - \dfrac{1}{{2\sqrt 2 }} \\\

Explanation

Solution

Hint-In this question, we use the concept of trigonometric equations. We use the general solution, cosx=cosyx=2nπ±y,nI\cos x = \cos y \Rightarrow x = 2n\pi \pm y,n \in I . First we try to write a question in terms of the general equation then apply the formula of the trigonometric equation.

Complete step-by-step answer:
We have an equation sin(πcosθ)=cos(πsinθ)\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right) and we have to write equation in term of general trigonometric equation.
sin(πcosθ)=cos(πsinθ)\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)
As we know, sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
cos(π2πcosθ)=cos(πsinθ)\Rightarrow \cos \left( {\dfrac{\pi }{2} - \pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)
Now, we apply cosx=cosyx=2nπ±y,nI\cos x = \cos y \Rightarrow x = 2n\pi \pm y,n \in I
π2πcosθ=2nπ±πsinθ,nI\Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = 2n\pi \pm \pi \sin \theta ,n \in I
This relation holds for any integer but now we use n=0 for easy calculation.
π2πcosθ=±πsinθ 12cosθ=±sinθ 12=cosθ±sinθ  \Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = \pm \pi \sin \theta \\\ \Rightarrow \dfrac{1}{2} - \cos \theta = \pm \sin \theta \\\ \Rightarrow \dfrac{1}{2} = \cos \theta \pm \sin \theta \\\
Now, we multiply by 12\dfrac{1}{{\sqrt 2 }} on both sides of the equation.
12×cosθ±12×sinθ=12×12\Rightarrow \dfrac{1}{{\sqrt 2 }} \times \cos \theta \pm \dfrac{1}{{\sqrt 2 }} \times \sin \theta = \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}
As we know, cosπ4=sinπ4=12\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}
cosπ4cosθ±sinπ4sinθ=122\Rightarrow \cos \dfrac{\pi }{4}\cos \theta \pm \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}
If we take negative value, cosπ4cosθsinπ4sinθ=122\cos \dfrac{\pi }{4}\cos \theta - \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}
Now we use trigonometric identity, cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
cos(θ+π4)=122\Rightarrow \cos \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}
If we take positive value, cosπ4cosθ+sinπ4sinθ=122\cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}
Now we use trigonometric identity, cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
cos(θπ4)=122\Rightarrow \cos \left( {\theta - \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}
So, the correct option is (c).
Note-In such types of problems we use some important points to solve questions in an easy way. First we use trigonometric general equations and equate angles for integer n=0 for easy calculation. Then we use trigonometric identities to solve the equation. So, we will get the required answer.