Solveeit Logo

Question

Mathematics Question on Determinants

If sin(yx)=logex+α2\sin\left(\frac{y}{x}\right) = \log_e |x| + \frac{\alpha}{2} is the solution of the differential equation xcos(yx)dydx=ycos(yx)+xx \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + xand y(1)=π3y(1) = \frac{\pi}{3}, then α2\alpha^2 is equal to

A

3

B

12

C

4

D

9

Answer

3

Explanation

Solution

Starting with the differential equation:
xcos(yx)dydx=ycos(yx)+xx \cos \left( \frac{y}{x} \right) \frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x

Step 1. Divide both sides by x2cos(yx)x^2 \cos \left( \frac{y}{x} \right):
cos(yx)(yxdydxyx2)=1x\cos \left( \frac{y}{x} \right) \left( \frac{y}{x} \frac{dy}{dx} - \frac{y}{x^2} \right) = \frac{1}{x}

Step 2. Let yx=t\frac{y}{x} = t, then y=txy = tx and dydx=t+xdtdx\frac{dy}{dx} = t + x \frac{dt}{dx}, substituting into the equation:
cost(dtdx)=1x\cos t \left( \frac{dt}{dx} \right) = \frac{1}{x}

Step 3. Integrate both sides:
sint=lnx+c\sin t = \ln |x| + c
sinyx=lnx+c\sin \frac{y}{x} = \ln |x| + c
Step 4. Using the initial condition y(1)=32y(1) = \frac{\sqrt{3}}{2}, we find c=32c = \frac{\sqrt{3}}{2}.
Thus, α=3    α2=3 \alpha = \sqrt{3} \implies \alpha^2 = 3
The Correct Answer is: 3