Solveeit Logo

Question

Question: If \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \...

If sin(π4cotθ)=cos(π4tanθ)\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right) then θ=nπ+π4\theta = n\pi + \dfrac{\pi }{4} , nZn \in Z
II. tan(π2sinθ)=cot(π2cosθ)\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right) then sin(θ+π4)=±12\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{\sqrt 2 }}
A.Only I is true
B.Only II is true
C.Both I and II are true
D.Neither I or II are true

Explanation

Solution

Hint : We are asked to find out which of the following statements are true. For this try to find out the value of θ\theta for each statement. Equate L.H.S to R.H.S such that you can simply find the value of θ\theta . Then compare with the options given and select the appropriate answer.

Complete step-by-step answer :
Given, two expressions
sin(π4cotθ)=cos(π4tanθ)\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right) and tan(π2sinθ)=cot(π2cosθ)\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)

Let us check each expression one by one.
The first expression is sin(π4cotθ)=cos(π4tanθ)\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)
L.H.S=sin(π4cotθ)L.H.S = \sin \left( {\dfrac{\pi }{4}\cot \theta } \right) (i)
We know, sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
Using this in equation (i), we get
L.H.S=cos(π2π4cotθ)L.H.S = \cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right)
Equating with the R.H.S we get
cos(π2π4cotθ)=cos(π4tanθ)\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)
Equating the angles of cosine, we get

\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}(\tan \theta + \cot \theta ) \\\ \Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\tan \theta + \dfrac{1}{{\tan \theta }}} \right) \\\ \Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{\tan \theta }}} \right) $$ We know, $$1 + {\tan ^2}\theta = {\sec ^2}\theta $$ using this we get $$\dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{{{\sec }^2}\theta }}{{\tan \theta }}} \right) \\\ \Rightarrow 2\tan \theta = {\sec ^2}\theta \\\ \Rightarrow 2\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right) = \left( {\dfrac{1}{{{{\cos }^2}\theta }}} \right) $$ $$\Rightarrow 2\sin \theta \cos \theta = 1 \\\ \Rightarrow \sin 2\theta = 1 \\\ \Rightarrow 2\theta = \dfrac{{n\pi }}{2} \\\ \Rightarrow \theta = \dfrac{{n\pi }}{4} $$ Where n is any integer Therefore statement I is incorrect as it says $$\theta = n\pi + \dfrac{\pi }{4}$$ but $$\theta = \dfrac{{n\pi }}{4}$$ . Second expression: $$\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)$$ We can write $$\cot \left( {\dfrac{\pi }{2} - \theta } \right) = \tan \theta $$ . Using this we get $$\cot \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)$$ Equating the angles we get, $$\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \left( {\dfrac{\pi }{2}\cos \theta } \right)$$ $$\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{2}\sin \theta + \dfrac{\pi }{2}\cos \theta \\\ \Rightarrow \sin \theta + \cos \theta = 1 $$ Multiplying both sides by $$\dfrac{1}{{\sqrt 2 }}$$ , we get $$\dfrac{1}{{\sqrt 2 }}\sin \theta + \dfrac{1}{{\sqrt 2 }}\cos \theta = \dfrac{1}{{\sqrt 2 }}$$ We know, $$\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$$ using this we get $$\sin \theta \cos \dfrac{\pi }{4} + \cos \theta \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$$ We have $$\sin (A + B) = \sin A\cos B + \cos A\sin B$$ , using this we get $$\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$$ Therefore, statement II is true. Hence, the correct answer is option (B) Only II is true **So, the correct answer is “Option B”.** **Note** : For such questions, where the value of $$\theta $$ is given and you need to check whether it is true or not, try to simplify the expression such that you can find the value of $$\theta $$ . Most importantly, always remember the trigonometric identities as these help us to get a simplified answer. I. If $$\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)$$ then $$\theta = n\pi + \dfrac{\pi }{4}$$ , $$n \in Z$$ II. $$\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)$$ then $$\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{\sqrt 2 }}$$