Solveeit Logo

Question

Question: If \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} ...

If sin[cot1(x+1)]=cos(tan1x)\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right), then find the value of xx.

Explanation

Solution

In this question, we will proceed by converting cot1{\cot ^{ - 1}} in terms of sin1{\sin ^{ - 1}} and tan1{\tan ^{ - 1}} in terms of cos1{\cos ^{ - 1}} by using the formula cot1(x+1)=sin111+(x+1)2{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }} and tan1x=cos111+x2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}. So, use this concept to reach the solution of the problem.

Complete step by step answer:
Given that sin[cot1(x+1)]=cos(tan1x)\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)
By using the formula cot1(x+1)=sin111+(x+1)2{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }} and tan1x=cos111+x2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}
sin[sin111+(1+x)2]=cos[cos111+x2]\Rightarrow \sin \left[ {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right] = \cos \left[ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]
We know that, sin(sin1A)=A\sin \left( {{{\sin }^{ - 1}}A} \right) = A and cos(cos1A)=A\cos \left( {{{\cos }^{ - 1}}A} \right) = A

11+(1+x)2=11+x2 1+x2=1+(1+x)2  \Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \\\ \Rightarrow \sqrt {1 + {x^2}} = \sqrt {1 + {{\left( {1 + x} \right)}^2}} \\\

Squaring on both sides, we have

1+x2=1+(1+x)2 1+x2=1+1+2x+x2 1+x2=2+2x+x2 1+x22x2=2x 1=2x x=12  \Rightarrow 1 + {x^2} = 1 + {\left( {1 + x} \right)^2} \\\ \Rightarrow 1 + {x^2} = 1 + 1 + 2x + {x^2} \\\ \Rightarrow 1 + {x^2} = 2 + 2x + {x^2} \\\ \Rightarrow 1 + {x^2} - 2 - {x^2} = 2x \\\ \Rightarrow - 1 = 2x \\\ \therefore x = - \dfrac{1}{2} \\\

Thus, the value of xx is 12 - \dfrac{1}{2}

Note: To solve these kinds of questions, students must be familiar with all the formulae in trigonometry and inverse trigonometry. If we didn’t remember the formulae we can draw the corresponding right angle triangle then we convert the terms of cot1{\cot ^{ - 1}} and tan1{\tan ^{ - 1}} in terms of sin1{\sin ^{ - 1}} and cos1{\cos ^{ - 1}} respectively. But it consumes a lot of time. So, do remember the formulae in order to solve them easily.