Solveeit Logo

Question

Question: If \(\sin \left( {\alpha + \beta } \right) = 1,\sin \left( {\alpha - \beta } \right) = 1/2\), then \...

If sin(α+β)=1,sin(αβ)=1/2\sin \left( {\alpha + \beta } \right) = 1,\sin \left( {\alpha - \beta } \right) = 1/2, then tan(α+2β)tan(2α+β)=\tan \left( {\alpha + 2\beta } \right)\tan \left( {2\alpha + \beta } \right) =
(a) 1\left( a \right){\text{ 1}}
(b) - 1\left( b \right){\text{ - 1}}
(c) 0\left( c \right){\text{ 0}}
(d) None\left( d \right){\text{ None}}

Explanation

Solution

To solve this question we have to first calculate the α&β\alpha \& \beta and for this, by using the equation from the sin(α+β)=1,sin(αβ)=1/2\sin \left( {\alpha + \beta } \right) = 1,\sin \left( {\alpha - \beta } \right) = 1/2 , from its interval we will get the value of α&β\alpha \& \beta . And then we will calculate the value tan(α+2β)tan(2α+β)\tan \left( {\alpha + 2\beta } \right)\tan \left( {2\alpha + \beta } \right) by substituting the values. And in this, we will solve this question.

Complete step by step solution:
So it is given that sin(α+β)=1\sin \left( {\alpha + \beta } \right) = 1
And since, (α,β[0,π/2])\left( {\alpha ,\beta \in \left[ {0,\pi /2} \right]} \right) so from this
α+β=π/2\Rightarrow \alpha + \beta = \pi /2
Also, it is given that sin(αβ)=1/2\sin \left( {\alpha - \beta } \right) = 1/2
And since, (α,β[0,π/2])\left( {\alpha ,\beta \in \left[ {0,\pi /2} \right]} \right) so from this
αβ=π/6\Rightarrow \alpha - \beta = \pi /6
From this, on solving for the value of α&β\alpha \& \beta , we get
α=π3 and β=π6\Rightarrow \alpha = \dfrac{\pi }{3}{\text{ and }}\beta = \dfrac{\pi }{6}
Since we have to find tan(α+2β)tan(2α+β)\tan \left( {\alpha + 2\beta } \right)\tan \left( {2\alpha + \beta } \right) so for this we will substitute the values of α&β\alpha \& \beta and we get
α+2β=2π3\Rightarrow \alpha + 2\beta = \dfrac{{2\pi }}{3}
Therefore putting it in the main equation, we get
tan(α+2β)=tan2π3\Rightarrow \tan \left( {\alpha + 2\beta } \right) = \tan \dfrac{{2\pi }}{3}
On further expanding more, the tangent will be
tan(ππ/3)\Rightarrow \tan \left( {\pi - \pi /3} \right)
And as we know that tan(πθ)=tanθ\tan \left( {\pi - \theta } \right) = - \tan \theta
Therefore, the above equation will be equal to
tanπ/3\Rightarrow - \tan \pi /3
And on putting the values for it, we get
3\Rightarrow - \sqrt 3
Therefore, we have tan(α+2β)=3\tan \left( {\alpha + 2\beta } \right) = - \sqrt 3 , we will name it equation 11
Also for this, we will substitute the values of α&β\alpha \& \beta and we get
2α+β=5π6\Rightarrow 2\alpha + \beta = \dfrac{{5\pi }}{6}
Therefore putting it in the main equation, we get
tan(2α+β)=tan5π6\Rightarrow \tan \left( {2\alpha + \beta } \right) = \tan \dfrac{{5\pi }}{6}
On further expanding more, the tangent will be
tan(ππ/6)\Rightarrow \tan \left( {\pi - \pi /6} \right)
And as we know that tan(πθ)=tanθ\tan \left( {\pi - \theta } \right) = - \tan \theta
Therefore, the above equation will be equal to
tanπ/6\Rightarrow - \tan \pi /6
And on putting the values for it, we get
13\Rightarrow - \dfrac{1}{{\sqrt 3 }}
Therefore, we have tan(2α+β)=1/3\tan \left( {2\alpha + \beta } \right) = - 1/\sqrt 3 , we will name it equation 22
Now from equation 11 and equation 22 , on substituting the values for tan(α+2β)tan(2α+β)\tan \left( {\alpha + 2\beta } \right)\tan \left( {2\alpha + \beta } \right) , we get
3×(13)\Rightarrow - \sqrt 3 \times \left( { - \dfrac{1}{{\sqrt 3 }}} \right)
On canceling the like terms, we get
1\Rightarrow 1
Therefore, tan(α+2β)tan(2α+β)\tan \left( {\alpha + 2\beta } \right)\tan \left( {2\alpha + \beta } \right) will be equal to 11 .

Hence, the option (a)\left( a \right) is correct.

Note:
Here to make this simplification easier we can use the degree instead of radian as sometimes it may make someone stuck for a bit to think about it. Also, one more point we should take care of is we should remember the interval of the functions as it will always help to solve this type of problem.