Solveeit Logo

Question

Question: If \(\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)\) , \(0 < \alpha ,...

If sin(1200α)=sin(1200β)\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) , 0<α,β<π0 < \alpha ,\beta < \pi , then find the relation between α\alpha and β\beta .

Explanation

Solution

For solving this question firstly, we will apply the formula for sinCsinD\sin C-\sin D . After that, we will use the results of equations like sinθ=0\sin \theta =0 and cosθ=0\cos \theta =0 to write the relation between α\alpha and β\beta in terms of a variable nn where nn is an integer. Then, we will consider the inequality 0<α,β<π0 < \alpha ,\beta < \pi to write our final answer.

Complete step-by-step answer:
Given:
It is given that if sin(1200α)=sin(1200β)\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) , 0<α,β<π0 < \alpha ,\beta < \pi and we have to find the relation between α\alpha and β\beta .
Now, before we proceed we should know the following three formulas:
sinCsinD=2cos(C+D2)sin(CD2).................(1) sinθ=0 θ=nπ (nI).....................................................(2) cosθ=0 θ=(2n+1)π2 (nI).........................................(3) \begin{aligned} & \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 1 \right) \\\ & \sin \theta =0 \\\ & \Rightarrow \theta =n\pi \text{ }\left( n\in I \right).....................................................\left( 2 \right) \\\ & \cos \theta =0 \\\ & \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ }\left( n\in I \right).........................................\left( 3 \right) \\\ \end{aligned}
Now, as we have sin(1200α)=sin(1200β)\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) . Then,
sin(1200α)=sin(1200β) sin(2π3α)sin(2π3β)=0 \begin{aligned} & \sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) \\\ & \Rightarrow \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\\ \end{aligned}
Now, we will use the formula from the equation (1). Then,
sin(2π3α)sin(2π3β)=0 2cos(2π/3α+2π/3β2)sin(2π/3α2π/3+β2)=0 2cos(2π3(α+β)2)sin(βα2)=0 \begin{aligned} & \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\\ & \Rightarrow 2\cos \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha +{}^{2\pi }/{}_{3}-\beta }{2} \right)\sin \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha -{}^{2\pi }/{}_{3}+\beta }{2} \right)=0 \\\ & \Rightarrow 2\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\\ \end{aligned}
Now, from the above result we will have the following two results:
1. cos(2π3(α+β)2)=0\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0
2. sin(βα2)=0\sin \left( \dfrac{\beta -\alpha }{2} \right)=0
Now, at least one of the above results could be true so, we will solve both results separately.
1. cos(2π3(α+β))=0\cos \left( \dfrac{2\pi }{3}-\left( \alpha +\beta \right) \right)=0 :
Now, using the formula from the equation (3). Then,
cos(2π3(α+β)2)=0=0 2π3(α+β)2=(2n+1)π2 (α+β)2=nπ+π22π3 (α+β)2=nππ6 α+β=π32nπ..............(4) \begin{aligned} & \cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0=0 \\\ & \Rightarrow \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\\ & \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi +\dfrac{\pi }{2}-\dfrac{2\pi }{3} \\\ & \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi -\dfrac{\pi }{6} \\\ & \Rightarrow \alpha +\beta =\dfrac{\pi }{3}-2n\pi ..............\left( 4 \right) \\\ \end{aligned}
Now, we got α+β=π32nπ\alpha +\beta =\dfrac{\pi }{3}-2n\pi where nn is an integer. But as it is given that 0<α<π0 < \alpha < \pi and 0<β<π0 < \beta < \pi so, we can add inequality 0<α<π0 < \alpha < \pi and 0<β<π0 < \beta < \pi to get the range of values in which α+β\alpha +\beta lies. Then,
0<α<π 0<β<π 0<α+β<2π \begin{aligned} & 0 < \alpha < \pi \\\ & 0 < \beta < \pi \\\ & \Rightarrow 0 < \alpha +\beta < 2\pi \\\ \end{aligned}
Now, we can substitute α+β=π32nπ\alpha +\beta =\dfrac{\pi }{3}-2n\pi from equation (4), in the above inequality. Then,
0<α+β<2π 0<π32nπ<2π \begin{aligned} & 0 < \alpha +\beta < 2\pi \\\ & \Rightarrow 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\\ \end{aligned}
Now, we will subtract π3\dfrac{\pi }{3} from each term in the above inequality. Then,
0<π32nπ<2π π3<2nπ<2ππ3 π3<2nπ<5π3 \begin{aligned} & 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\\ & \Rightarrow -\dfrac{\pi }{3} < -2n\pi < 2\pi -\dfrac{\pi }{3} \\\ & \Rightarrow -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\\ \end{aligned}
Now, we will divide each term by 2π2\pi in the above inequality. Then,
π3<2nπ<5π3 π3×2π<n<5π3×2π 16<n<56 \begin{aligned} & -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\\ & \Rightarrow -\dfrac{\pi }{3\times 2\pi } < -n < \dfrac{5\pi }{3\times 2\pi } \\\ & \Rightarrow -\dfrac{1}{6} < -n < \dfrac{5}{6} \\\ \end{aligned}
Now, we multiply each term by 1-1 so, the inequality sign will be reversed. Then,
16<n<56 16>n>56 56<n<16 \begin{aligned} & -\dfrac{1}{6} < -n < \dfrac{5}{6} \\\ & \Rightarrow \dfrac{1}{6} > n > -\dfrac{5}{6} \\\ & \Rightarrow -\dfrac{5}{6} < n < \dfrac{1}{6} \\\ \end{aligned}
Now, from the above result, we can say that n(56,16)n\in \left( -\dfrac{5}{6},\dfrac{1}{6} \right) and as we know that, nn is an integer. And between 56-\dfrac{5}{6} and 16\dfrac{1}{6} , 00 is the only integer. So, the value of n=0n=0 only for this case and we can put n=0n=0 in equation (4). Then,
α+β=π32nπ α+β=π3......................(5) \begin{aligned} & \alpha +\beta =\dfrac{\pi }{3}-2n\pi \\\ & \Rightarrow \alpha +\beta =\dfrac{\pi }{3}......................\left( 5 \right) \\\ \end{aligned}

2. sin(βα2)=0\sin \left( \dfrac{\beta -\alpha }{2} \right)=0 :
Now, using the formula from the equation (2). Then,
sin(βα2)=0 βα2=nπ βα=2nπ..............(6) \begin{aligned} & \sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\\ & \Rightarrow \dfrac{\beta -\alpha }{2}=n\pi \\\ & \Rightarrow \beta -\alpha =2n\pi ..............\left( 6 \right) \\\ \end{aligned}
Now, we got βα=2nπ\beta -\alpha =2n\pi where nn is an integer. But as it is given that 0<α<π0 < \alpha < \pi so, we multiply each term by 1-1 in 0<α<π0 < \alpha < \pi then, the inequality sign will be reversed. Then,
0<α<π π<α<0 \begin{aligned} & 0 < \alpha < \pi \\\ & \Rightarrow -\pi < -\alpha < 0 \\\ \end{aligned}
Now, as we know that 0<β<π0 < \beta < \pi so, we can add inequality π<α<0-\pi < -\alpha < 0 from the above with inequality 0<β<π0 < \beta < \pi to get the range of values in which βα\beta -\alpha lies. Then,
π<α<0 0<β<π π<βα<π \begin{aligned} & -\pi < -\alpha < 0 \\\ & 0 < \beta < \pi \\\ & \Rightarrow -\pi < \beta -\alpha < \pi \\\ \end{aligned}
Now, we can substitute βα=2nπ\beta -\alpha =2n\pi from equation (6) in the above inequality. Then,
π<βα<π π<2nπ<π \begin{aligned} & -\pi < \beta -\alpha < \pi \\\ & \Rightarrow -\pi < 2n\pi < \pi \\\ \end{aligned}
Now, we divide each term by 2π2\pi in the above inequality. Then,
π<2nπ<π π2π<n<π2π 12<n<12 \begin{aligned} & -\pi < 2n\pi < \pi \\\ & \Rightarrow \dfrac{-\pi }{2\pi } < n < \dfrac{\pi }{2\pi } \\\ & \Rightarrow -\dfrac{1}{2} < n < \dfrac{1}{2} \\\ \end{aligned}
Now, from the above result, we can say that n(12,12)n\in \left( -\dfrac{1}{2},\dfrac{1}{2} \right) and as we know that, nn is an integer. And between 12-\dfrac{1}{2} and 12\dfrac{1}{2} , 00 is the only integer. So, the value of n=0n=0 only for this case and we can put n=0n=0 in equation (6). Then,
βα=2nπ βα=0 β=α...........................(7) \begin{aligned} & \beta -\alpha =2n\pi \\\ & \Rightarrow \beta -\alpha =0 \\\ & \Rightarrow \beta =\alpha ...........................\left( 7 \right) \\\ \end{aligned}
Now, from the equation (5) and equation (7), we have the following two relations between α\alpha and β\beta :
1. α+β=π3\alpha +\beta =\dfrac{\pi }{3} .
2. β=α\beta =\alpha .
Thus, at least one of the above relation should be true if sin(1200α)=sin(1200β)\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) , 0<α,β<π0 < \alpha ,\beta < \pi .

Note: Here, the student should first try to understand what is asked in the problem. After that, we should apply the formula of sinCsinD\sin C-\sin D correctly and in this question always remember while solving that it is given that 0<α,β<π0 < \alpha ,\beta < \pi so, we should consider this inequality also to write our final answer. Moreover, always avoid calculation mistakes while solving the problem to get the correct answer.