Solveeit Logo

Question

Question: If \(\sin\ \lbrack(2n + 1)\ \pi - \alpha\rbrack\), then the value of \(= \sin(2n\pi + \pi - \alpha)\...

If sin [(2n+1) πα]\sin\ \lbrack(2n + 1)\ \pi - \alpha\rbrack, then the value of =sin(2nπ+πα)= \sin(2n\pi + \pi - \alpha) is.

A

sin(πα)=sinα\sin(\pi - \alpha) = \sin\alpha or 1

B

cosxsinx=12\cos x - \sin x = \frac{1}{\sqrt{2}} or 2\sqrt{2}

C

12cosx12sinx=12\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x = \frac{1}{2} or cos(π4+x)=cosπ3\cos\left( \frac{\pi}{4} + x \right) = \cos\frac{\pi}{3}

D

π4+x=2nπ±π3\frac{\pi}{4} + x = 2n\pi \pm \frac{\pi}{3}

Answer

12cosx12sinx=12\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x = \frac{1}{2} or cos(π4+x)=cosπ3\cos\left( \frac{\pi}{4} + x \right) = \cos\frac{\pi}{3}

Explanation

Solution

cotA,cotB\cot A,\cot B

cotC\cot C

cotA+cotC=2cotB\cot A + \cot C = 2\cot B

cosAsinA+cosCsinC=2cosBsinB\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = \frac{2\cos B}{\sin B}

b2+c2a22bc(ka)+a2+b2c22ab(kc)=2a2+c2b22ac(kb)\frac{b^{2} + c^{2} - a^{2}}{2bc(ka)} + \frac{a^{2} + b^{2} - c^{2}}{2ab(kc)} = 2\frac{a^{2} + c^{2} - b^{2}}{2ac(kb)}

a2+c2=2b2a^{2} + c^{2} = 2b^{2}; ∴ a2,b2,c2a^{2},b^{2},c^{2}.