Solveeit Logo

Question

Question: If sin (cot$^{-1}$ (cos (tan$^{-1}$x))) = $\sqrt{\frac{P}{18}}$ when x = 4 then the value of $P$ is...

If sin (cot1^{-1} (cos (tan1^{-1}x))) = P18\sqrt{\frac{P}{18}} when x = 4 then the value of PP is

Answer

17

Explanation

Solution

To find the value of PP, we need to evaluate the given expression step-by-step from the innermost function outwards, substituting x=4x=4.

The given equation is: sin(cot1(cos(tan1x)))=P18\sin (\cot^{-1} (\cos (\tan^{-1}x))) = \sqrt{\frac{P}{18}}

Substitute x=4x=4 into the equation: sin(cot1(cos(tan14)))=P18\sin (\cot^{-1} (\cos (\tan^{-1}4))) = \sqrt{\frac{P}{18}}

Step 1: Evaluate the innermost expression, tan14\tan^{-1}4. Let A=tan14A = \tan^{-1}4. This implies tanA=4\tan A = 4. We can construct a right-angled triangle where one angle is AA. Since tanA=oppositeadjacent=41\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{1}, we have: Opposite side = 4 Adjacent side = 1 Using the Pythagorean theorem, the hypotenuse = (opposite)2+(adjacent)2=42+12=16+1=17\sqrt{(\text{opposite})^2 + (\text{adjacent})^2} = \sqrt{4^2 + 1^2} = \sqrt{16+1} = \sqrt{17}.

Step 2: Evaluate cos(tan14)\cos(\tan^{-1}4), which is cosA\cos A. From the triangle constructed in Step 1: cosA=adjacenthypotenuse=117\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{17}}.

Step 3: Evaluate cot1(cos(tan14))\cot^{-1}(\cos(\tan^{-1}4)), which is cot1(117)\cot^{-1}\left(\frac{1}{\sqrt{17}}\right). Let B=cot1(117)B = \cot^{-1}\left(\frac{1}{\sqrt{17}}\right). This implies cotB=117\cot B = \frac{1}{\sqrt{17}}. We can construct another right-angled triangle where one angle is BB. Since cotB=adjacentopposite=117\cot B = \frac{\text{adjacent}}{\text{opposite}} = \frac{1}{\sqrt{17}}, we have: Adjacent side = 1 Opposite side = 17\sqrt{17} Using the Pythagorean theorem, the hypotenuse = (adjacent)2+(opposite)2=12+(17)2=1+17=18\sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{1^2 + (\sqrt{17})^2} = \sqrt{1+17} = \sqrt{18}.

Step 4: Evaluate sin(cot1(cos(tan14)))\sin(\cot^{-1}(\cos(\tan^{-1}4))), which is sinB\sin B. From the triangle constructed in Step 3: sinB=oppositehypotenuse=1718\sin B = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{17}}{\sqrt{18}}.

Step 5: Equate the result to P18\sqrt{\frac{P}{18}} and solve for PP. We have 1718=P18\frac{\sqrt{17}}{\sqrt{18}} = \sqrt{\frac{P}{18}}. To eliminate the square roots, square both sides of the equation: (1718)2=(P18)2\left(\frac{\sqrt{17}}{\sqrt{18}}\right)^2 = \left(\sqrt{\frac{P}{18}}\right)^2 1718=P18\frac{17}{18} = \frac{P}{18} Multiply both sides by 18: P=17P = 17.