Question
Mathematics Question on Trigonometric Functions
If sinB=3sin(2A+B), then 2tanA+tan(A+B) =
A
0
B
−2
C
1
D
2
Answer
0
Explanation
Solution
Given that, sinB=3sin(2A+B)
⇒ sin(2A+B)sinB=13
⇒ sinB−sin(2A+B)sinB+sin(2A+B)=3−13+1
(use componendo-dividendo formula)
⇒ −2cos(A+B).sin(A)2sin(A+B).cos(A)=24
⇒ tan(A+B).cotA=−2
⇒ tan(A+B)=−2tanA
⇒ 2tanA+tan(A+B)=0