Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sinB=3sin(2A+B),\sin B=3\sin (2A+B), then 2tanA+tan(A+B)2\tan A+\tan (A+B) =

A

00

B

2-2

C

11

D

22

Answer

00

Explanation

Solution

Given that, sinB=3sin(2A+B)\sin B=3\sin (2A+B)
\Rightarrow sinBsin(2A+B)=31\frac{\sin \,\,B}{\sin \,(2A+B)}=\frac{3}{1}
\Rightarrow sinB+sin(2A+B)sinBsin(2A+B)=3+131\frac{\sin B+\sin (2A+B)}{\sin B-\sin (2A+B)}=\frac{3+1}{3-1}
(use componendo-dividendo formula)
\Rightarrow 2sin(A+B).cos(A)2cos(A+B).sin(A)=42-\frac{2\sin \,(A+B).cos(A)}{2\cos \,(A+B).\sin (A)}=\frac{4}{2}
\Rightarrow tan(A+B).cotA=2\tan (A+B).\cot \,A=-2
\Rightarrow tan(A+B)=2tanA\tan \,(A+B)=-2\tan A
\Rightarrow 2tanA+tan(A+B)=02\tan A+\tan (A+B)=0