Solveeit Logo

Question

Question: If sinθ and –cosθ are the roots of the equation ax<sup>2</sup> – bx – c = 0, where a, b, c are the ...

If sinθ and –cosθ are the roots of the equation

ax2 – bx – c = 0, where a, b, c are the sides of a triangle ABC, then cosB is equal to

A

1 – c2a\frac{c}{2a}

B

1 – ca\frac{c}{a}

C

1 + c2a\frac{c}{2a}

D

1 + c3a\frac{c}{3a}

Answer

1 + c2a\frac{c}{2a}

Explanation

Solution

Here sin θ – cos θ  = ba\frac{b}{a} and sinθcosθ = ca\frac{c}{a}

⇒ 1 – 2sinθcosθ = b2a2\frac{b^{2}}{a^{2}}

or 1 – 2ca=b2a2\frac{2c}{a} = \frac{b^{2}}{a^{2}}

⇒ a2 – b2 = 2ac.

Hence cosB=a2+c2b22ac\frac{a^{2} + c^{2}–b^{2}}{2ac}=2ac+c22ac\frac{2ac + c^{2}}{2ac}= 1 + c2a\frac{c}{2a}.