Solveeit Logo

Question

Question: If \[\sin \alpha \sin \beta -\cos \alpha \cos \beta +1=0\], Prove that \[1+\cot \alpha \tan \beta =0...

If sinαsinβcosαcosβ+1=0\sin \alpha \sin \beta -\cos \alpha \cos \beta +1=0, Prove that 1+cotαtanβ=01+\cot \alpha \tan \beta =0.

Explanation

Solution

Hint: As the given equation can be written as formula and finding out the value of α,β\alpha ,\beta and further applying the trigonometric properties and formula tan(α+β)=tanα+tanβ1tanαtanβ\tan \left( \alpha +\beta \right)=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }, which leads to the final answer.

Complete step-by-step answer:
Given sinαsinβcosαcosβ+1=0\sin \alpha \sin \beta -\cos \alpha \cos \beta +1=0
The equation can be further written as cosαcosβsinαsinβ=1\cos \alpha \cos \beta -\sin \alpha \sin \beta =1
It looks like it is the value of a known formula.
cosαcosβsinαsinβ=1\cos \alpha \cos \beta -\sin \alpha \sin \beta =1
cos(α+β)=1\cos \left( \alpha +\beta \right)=1
The value of cosine becomes zero only when θ\theta is 0{{0}^{\circ }}.
(α+β)=0\Rightarrow \left( \alpha +\beta \right)=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Now writing the formula for tan(α+β)\tan \left( \alpha +\beta \right)
tan(α+β)=tanα+tanβ1tanαtanβ\tan \left( \alpha +\beta \right)=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta } . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting (1) in (2) we get,
tan(0)=tanα+tanβ1tanαtanβ\tan \left( 0 \right)=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
Since the value of tan(0)=0\tan \left( 0 \right)=0
Now rewriting the above equation (a) we get,
tanα+tanβ=0\tan \alpha +\tan \beta =0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(b)
Now the equation (b) can be resolved to 1cotα+tanβ=0\dfrac{1}{\cot \alpha }+\tan \beta =0.
Further transformation gives us the 1+cotαtanβ=01+\cot \alpha \tan \beta =0.
Hence proved 1+cotαtanβ=01+\cot \alpha \tan \beta =0.

Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. As the interval is not given we have taken the value of cosine as 0{{0}^{\circ }} when cos(α+β)=1\cos \left( \alpha +\beta \right)=1.