Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sinα+sinβ=0=cosα+cosβ\sin \alpha + \sin \beta = 0 = \cos \alpha + \cos \beta, then cos2α+cos2β=\cos 2\alpha + \cos 2\beta =

A

2sin(α+β)- 2 \sin (\alpha + \beta)

B

2cos(α+β)- 2 \cos (\alpha + \beta)

C

2sin(α+β)2 \sin (\alpha + \beta)

D

2cos(α+β)2 \cos (\alpha + \beta)

Answer

2cos(α+β)- 2 \cos (\alpha + \beta)

Explanation

Solution

Given cosα+cosβ=0 \cos\alpha +\cos\beta = 0 ....(1) and sinα+sinβ=0\sin\alpha + \sin\beta = 0 ....(2) Squaring (1) and (2) and subtracting, we get (cosα+cosβ)2(sinα+sinβ)2=0\left(\cos\alpha + \cos \beta\right)^{2} - \left(\sin\alpha +\sin\beta\right)^{2} = 0 (cos2αsin2α)+(cos2βsin2β)+2(cosαcosβsinαsinβ)=0\left(\cos^{2} \alpha -\sin^{2}\alpha\right) +\left(\cos^{2}\beta -\sin^{2} \beta \right) + 2 \left(\cos\alpha \cos\beta -\sin\alpha \sin\beta \right) = 0 or cos2α+cos2β=2cos(α+β)\cos2 \alpha +\cos2\beta = - 2 \cos\left(\alpha +\beta \right)