Solveeit Logo

Question

Question: If \(\sin A,\cos A\) and \(\tan A\) are in G.P., then \(\cos^{3}A + \cos^{2}A\) is equal to...

If sinA,cosA\sin A,\cos A and tanA\tan A are in G.P., then cos3A+cos2A\cos^{3}A + \cos^{2}A is equal to

A

1

B

2

C

4

D

None of these

Answer

1

Explanation

Solution

We have sinA,cosA\sin A,\cos A and tanA\tan A are in G.P.

cos2A=sinAtanA=sin2AcosAcos3Asin2A=0\cos^{2}A = \sin A\tan A = \frac{\sin^{2}A}{\cos A} \Rightarrow \cos^{3}A - \sin^{2}A = 0

Hence cos3A+cos2A=sin2A+cos2A=1\cos^{3}A + \cos^{2}A = \sin^{2}A + \cos^{2}A = 1