Solveeit Logo

Question

Question: If \(\sin A=x \) , \(\cos B=y \) and \(A+B+C=0 \), then \({{x}^{2}}+2xy\sin C+{{y}^{2}} \)is equal t...

If sinA=x\sin A=x , cosB=y\cos B=y and A+B+C=0A+B+C=0 , then x2+2xysinC+y2{{x}^{2}}+2xy\sin C+{{y}^{2}} is equal to
(A) sin2C{{\sin }^{2}}C
(B) cos2C{{\cos }^{2}}C
(C) 1+sin2C1+{{\sin }^{2}}C
(D) 1+cos2C1+{{\cos }^{2}}C

Explanation

Solution

For answering this question we will use the given values sinA=x\sin A=x , cosB=y\cos B=y and A+B+C=0A+B+C=0 in the given equation x2+2xysinC+y2{{x}^{2}}+2xy\sin C+{{y}^{2}} and we will simplify it using sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B .

Complete step by step answer:
From the question we have sinA=x\sin A=x , cosB=y\cos B=y and A+B+C=0A+B+C=0 .
From A+B=C=0A+B=C=0 we have C=(A+B)C=-\left( A+B \right) , C=(A+B)C=-\left( A+B \right) , by using this we will have sinC=sin[(A+B)]\sin C=\sin \left[ -\left( A+B \right) \right] .
Let us substitute the respective values in the given equation x2+2xysinC+y2{{x}^{2}}+2xy\sin C+{{y}^{2}} . After that we will have sin2A+2sinAcosBsin[(A+B)]+cos2B{{\sin }^{2}}A+2\sin A\cos B\sin \left[ -\left( A+B \right) \right]+{{\cos }^{2}}B .
Since sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta by using this we will have sin2A2sinAcosBsin(A+B)+cos2B{{\sin }^{2}}A-2\sin A\cos B\sin \left( A+B \right)+{{\cos }^{2}}B .
Let us expand the term using the expansion sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B . After expanding we will have sin2A2sinAcosB[sinAcosB+cosAsinB]+cos2B{{\sin }^{2}}A-2\sin A\cos B\left[ \sin A\cos B+\cos A\sin B \right]+{{\cos }^{2}}B .
Let us expand this sin2A2sinAcosBsinAcosB2sinAcosBcosAsinA+cos2B{{\sin }^{2}}A-2\sin A\cos B\sin A\cos B-2\sin A\cos B\cos A\sin A+{{\cos }^{2}}B
If we observe we have sinAcosB\sin A\cos B appeared 2 times in a single term this can be written as square. This can be mathematically given as sin2A2sin2Acos2B2sinAcosBcosAsinA+cos2B{{\sin }^{2}}A-2{{\sin }^{2}}A{{\cos }^{2}}B-2\sin A\cos B\cos A\sin A+{{\cos }^{2}}B .
Let us expand the term 2sin2Acos2B2{{\sin }^{2}}A{{\cos }^{2}}B after this we will have sin2Asin2Acos2Bsin2Acos2B2sinAcosBcosAsinA+cos2B{{\sin }^{2}}A-{{\sin }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\cos }^{2}}B-2\sin A\cos B\cos A\sin A+{{\cos }^{2}}B .
If we observe we have sin2A{{\sin }^{2}}A and cos2A{{\cos }^{2}}A are common in 2 terms if we take them out we will have sin2A(1cos2B)2sinAcosBcosAsinA+cos2B(1sin2A){{\sin }^{2}}A\left( 1-{{\cos }^{2}}B \right)-2\sin A\cos B\cos A\sin A+{{\cos }^{2}}B\left( 1-{{\sin }^{2}}A \right) .
Since we have sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . By using and simplifying this we will have sin2Asin2B2sinAcosBcosAsinA+cos2Bcos2A{{\sin }^{2}}A{{\sin }^{2}}B-2\sin A\cos B\cos A\sin A+{{\cos }^{2}}B{{\cos }^{2}}A .
If we observe we have sinAcosBcosAsinB\sin A\cos B\cos A\sin B appeared 2 times in a single term this can be written as square. This can be mathematically given as sin2Asin2BsinAcosBcosAsinBsinAcosBcosAsinB+cos2Bcos2A{{\sin }^{2}}A{{\sin }^{2}}B-\sin A\cos B\cos A\sin B-\sin A\cos B\cos A\sin B+{{\cos }^{2}}B{{\cos }^{2}}A .
If we observe we have sinAsinB\sin A\sin B and cosAcosB\cos A\cos B are common in 2 terms if we take them out we will have sinAsinB(sinAsinBcosAcosB)+cosBcosA(cosAcosBsinAsinB)\sin A\sin B\left( \sin A\sin B-\cos A\cos B \right)+\cos B\cos A\left( \cos A\cos B-\sin A\sin B \right) .
If we observe we have (sinAsinBcosAcosB)\left( \sin A\sin B-\cos A\cos B \right) are common in 2 terms if we take them out we will have (sinAsinBcosAcosB)(sinAsinBcosAcosB)\left( \sin A\sin B-\cos A\cos B \right)\left( \sin A\sin B-\cos A\cos B \right) .
Since we know that cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B by using this expansion we will have (cos(A+B))(cos(A+B))\left( -\cos \left( A+B \right) \right)\left( -\cos \left( A+B \right) \right) .
Since we know that negative×negative=positive\text{negative}\times negative=positive we will have (cos(A+B))(cos(A+B))\left( \cos \left( A+B \right) \right)\left( \cos \left( A+B \right) \right) .
If we observe we have cos(A+B)\cos \left( A+B \right) appeared 2 times in a single term this can be written as square. This can be mathematically given as cos2(A+B){{\cos }^{2}}\left( A+B \right) .
From A+B=C=0A+B=C=0 we have C=(A+B)C=-\left( A+B \right) , by using this we will have cos2(A+B)=cos2(C){{\cos }^{2}}\left( A+B \right)={{\cos }^{2}}\left( -C \right) .
Since cos(θ)=+cosθ\cos \left( -\theta \right)=+\cos \theta by using this we will have cos2C{{\cos }^{2}}C .
So we will end up with a conclusion that when sinA=x\sin A=x , cosB=y\cos B=y and A+B+C=0A+B+C=0 , then x2+2xysinC+y2=cos2C{{x}^{2}}+2xy\sin C+{{y}^{2}}={{\cos }^{2}}C .

So, the correct answer is “Option B”.

Note: While solving questions of this type we should remember that the cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B not cos(A+B)=cosAcosB+sinAsinB\cos \left( A+B \right)=\cos A\cos B+\sin A\sin B if we use this by mistake we will end up having the conclusion x2+2xysinC+y2=cos2(AB){{x}^{2}}+2xy\sin C+{{y}^{2}}={{\cos }^{2}}\left( A-B \right) . It is completely a wrong answer.