Solveeit Logo

Question

Question: If \(\sin A = \sin B\)and \(\cos A = \cos B,\) then...

If sinA=sinB\sin A = \sin Band cosA=cosB,\cos A = \cos B, then

A

sinAB2=0\sin\frac{A - B}{2} = 0

B

sinA+B2=0\sin\frac{A + B}{2} = 0

C

cosAB2=0\cos\frac{A - B}{2} = 0

D

cos(A+B)=0\cos(A + B) = 0

Answer

sinAB2=0\sin\frac{A - B}{2} = 0

Explanation

Solution

We have sinA=sinB\sin A = \sin B and cosA=cosB\cos A = \cos B

sinAsinB=cosAcosBsinAcosBcosAsinB=0sin(AB)=0\frac{\sin A}{\sin B} = \frac{\cos A}{\cos B} \Rightarrow \sin A\cos B - \cos A\sin B = 0 \Rightarrow \sin(A - B) = 0

Hence, sin(AB2)=0.\sin\left( \frac{A - B}{2} \right) = 0.