Question
Question: If \(\sin A + \sin B = x\) and \(\cos A + \cos B = y\) then show \(\tan \left( {\dfrac{{A - B}}{2}} ...
If sinA+sinB=x and cosA+cosB=y then show tan(2A−B)=±x2+y24−x2−y2?
Solution
In this question, first we have to use the formula sinA+sinB=2sin(2A+B)cos(2A−B) and cosA+cosB=2cos(2A+B)cos(2A−B) to convert the angles into half-angles. Then we have to use the relation between the sine function and cosine function of sin2x+cos2x=1 to get to the final answer.
Complete step-by-step answer:
In the above question, it is given that
sinA+sinB=x
Now use the formula sinA+sinB=2sin(2A+B)cos(2A−B) in the above equation.
⇒2sin(2A+B)cos(2A−B)=x................(1)
Also,
cosA+cosB=y
Now, use the formula cosA+cosB=2cos(2A+B)cos(2A−B) in the above equation.
⇒2cos(2A+B)cos(2A−B)=y.....................(2)
Now, we have to remove the term of sine and cosine value of (2A+B) to get the value of tan(2A−B).
Now squaring both sides in equation (1).
⇒4sin2(2A+B)cos2(2A−B)=x2
Now use the identity sin2x+cos2x=1in the above equation.
\Rightarrow 4\left\\{ {1 - {{\cos }^2}\left( {\dfrac{{A + B}}{2}} \right)} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}..........\left( 3 \right)
Now, squaring both sides in equation (2).
⇒4cos2(2A+B)cos2(2A−B)=y2
⇒cos2(2A+B)=4cos2(2A−B)y2.................(4)
From 3rdand4th equation, we get
\Rightarrow 4\left\\{ {1 - \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}
\Rightarrow 4\left\\{ {\dfrac{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}
Now, cancel 4cos2(2A−B) from numerator and denominator in left-hand side
⇒4cos2(2A−B)−y2=x2
Transpose y2 to RHS.
⇒4cos2(2A−B)=x2+y2
Now, divide both sides by 4.
⇒cos2(2A−B)=4x2+y2
Now use the identity cosx=secx1
⇒sec2(2A−B)1=4x2+y2
Now using cross-multiplication
⇒sec2(2A−B)=x2+y24
Now using the identity 1+tan2x=sec2x
⇒1+tan2(2A−B)=x2+y24
Now, transpose 1 to RHS
⇒tan2(2A−B)=x2+y24−1
Now taking LCM in right hand side
⇒tan2(2A−B)=x2+y24−x2−y2
Now taking root both sides, we get
⇒tan(2A−B)=±x2+y24−x2−y2
Hence proved.
Note: Formulas are the most important thing in trigonometry. Using some half angle- formula we can convert an expression with exponents to one without exponents, and whose angles are multiples of the original angle. It is to note that we get half-angle formulas from double angle formulas. Both sin (2A) and cos (2A) are obtained from the double angle formula for the cosine.