Solveeit Logo

Question

Question: If \(\sin A + \sin B = x\) and \(\cos A + \cos B = y\) then show \(\tan \left( {\dfrac{{A - B}}{2}} ...

If sinA+sinB=x\sin A + \sin B = x and cosA+cosB=y\cos A + \cos B = y then show tan(AB2)=±4x2y2x2+y2\tan \left( {\dfrac{{A - B}}{2}} \right) = \pm \sqrt {\dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}} ?

Explanation

Solution

In this question, first we have to use the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) to convert the angles into half-angles. Then we have to use the relation between the sine function and cosine function of sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 to get to the final answer.

Complete step-by-step answer:
In the above question, it is given that
sinA+sinB=x\sin A + \sin B = x
Now use the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) in the above equation.
2sin(A+B2)cos(AB2)=x................(1)\Rightarrow 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = x................\left( 1 \right)
Also,
cosA+cosB=y\cos A + \cos B = y
Now, use the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) in the above equation.
2cos(A+B2)cos(AB2)=y.....................(2)\Rightarrow 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = y.....................\left( 2 \right)
Now, we have to remove the term of sine and cosine value of (A+B2)\left( {\dfrac{{A + B}}{2}} \right) to get the value of tan(AB2)\tan \left( {\dfrac{{A - B}}{2}} \right).
Now squaring both sides in equation (1)\left( 1 \right).
4sin2(A+B2)cos2(AB2)=x2\Rightarrow 4{\sin ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}
Now use the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1in the above equation.
\Rightarrow 4\left\\{ {1 - {{\cos }^2}\left( {\dfrac{{A + B}}{2}} \right)} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}..........\left( 3 \right)
Now, squaring both sides in equation (2)\left( 2 \right).
4cos2(A+B2)cos2(AB2)=y2\Rightarrow 4{\cos ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {y^2}

cos2(A+B2)=y24cos2(AB2).................(4) \Rightarrow {\cos ^2}\left( {\dfrac{{A + B}}{2}} \right) = \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}.................\left( 4 \right)
From 3rdand4th3rd\,and\,4th equation, we get
\Rightarrow 4\left\\{ {1 - \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}
\Rightarrow 4\left\\{ {\dfrac{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}
Now, cancel 4cos2(AB2)4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) from numerator and denominator in left-hand side
4cos2(AB2)y2=x2\Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2} = {x^2}
Transpose y2{y^2} to RHS.
4cos2(AB2)=x2+y2\Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2} + {y^2}
Now, divide both sides by 44.
cos2(AB2)=x2+y24\Rightarrow {\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{{x^2} + {y^2}}}{4}
Now use the identity cosx=1secx\cos x = \dfrac{1}{{\sec x}}
1sec2(AB2)=x2+y24\Rightarrow \dfrac{1}{{{{\sec }^2}\left( {\dfrac{{A - B}}{2}} \right)}} = \dfrac{{{x^2} + {y^2}}}{4}
Now using cross-multiplication
sec2(AB2)=4x2+y2\Rightarrow {\sec ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}
Now using the identity 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x
1+tan2(AB2)=4x2+y2\Rightarrow 1 + {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}
Now, transpose 11 to RHS
tan2(AB2)=4x2+y21\Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}} - 1
Now taking LCM in right hand side
tan2(AB2)=4x2y2x2+y2\Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}
Now taking root both sides, we get
tan(AB2)=±4x2y2x2+y2\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \pm \sqrt {\dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}}
Hence proved.

Note: Formulas are the most important thing in trigonometry. Using some half angle- formula we can convert an expression with exponents to one without exponents, and whose angles are multiples of the original angle. It is to note that we get half-angle formulas from double angle formulas. Both sin (2A)sin{\text{ }}\left( {2A} \right) and cos (2A)cos{\text{ }}\left( {2A} \right) are obtained from the double angle formula for the cosine.