Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If sinA,sinB,cosA\sin A , \sin B , \cos A are in GP, then roots of x2+2xcotB+1=0x ^{2}+2 x \cot B +1=0 are always

A

real

B

imaginary

C

greater than 1

D

equal

Answer

real

Explanation

Solution

sinA,sinB,cosA\sin A, \sin B, \cos A are in G.P. sin2B=sinAcosA1\therefore \sin ^{2} B =\sin A \cos A \rightarrow 1 x2+2xcotB+1=0x^{2}+2 x \cot B+1=0 D=(2cotB)24(1)(1)D =(2 \cot B )^{2}-4(1)(1) D=4cot2B4D =4 \cot ^{2} B -4 D=4[cos2Bsin2B1]D=4\left[\frac{\cos ^{2} B}{\sin ^{2} B}-1\right] D=4[cos2Bsin2Bsin2B]D=4\left[\frac{\cos ^{2} B-\sin ^{2} B}{\sin ^{2} B}\right] D=4[1sin2Bsin2Bsin2B][cos2θ+sin2θ=1]D=4\left[\frac{1-\sin ^{2} B-\sin ^{2} B}{\sin ^{2} B}\right] \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right] D=4[12sin2Bsin2B]D=4\left[\frac{1-2 \sin ^{2} B}{\sin ^{2} B}\right] D=4[12sinAcosAsin2B]D=4\left[\frac{1-2 \sin A \cos A}{\sin ^{2} B}\right] (From equation 1) D=4[sin2A+cos2A2sinAcosAsin2B]D=4\left[\frac{\sin ^{2} A+\cos ^{2} A-2 \sin A \cos A}{\sin ^{2} B}\right] D=4[(sinAcosA)2sin2B]D=4\left[\frac{(\sin A-\cos A)^{2}}{\sin ^{2} B}\right] D=[2(sinAcosA)sinB]20D=\left[\frac{2(\sin A-\cos A)}{\sin B}\right]^{2} \geq 0 Therefore, roots of given equation are real.