Question
Mathematics Question on Arithmetic Progression
If sinA,sinB,cosA are in GP, then roots of x2+2xcotB+1=0 are always
A
real
B
imaginary
C
greater than 1
D
equal
Answer
real
Explanation
Solution
sinA,sinB,cosA are in G.P. ∴sin2B=sinAcosA→1 x2+2xcotB+1=0 D=(2cotB)2−4(1)(1) D=4cot2B−4 D=4[sin2Bcos2B−1] D=4[sin2Bcos2B−sin2B] D=4[sin2B1−sin2B−sin2B][∵cos2θ+sin2θ=1] D=4[sin2B1−2sin2B] D=4[sin2B1−2sinAcosA] (From equation 1) D=4[sin2Bsin2A+cos2A−2sinAcosA] D=4[sin2B(sinA−cosA)2] D=[sinB2(sinA−cosA)]2≥0 Therefore, roots of given equation are real.