Solveeit Logo

Question

Question: If \(\sin A + {\left( {\sin A} \right)^2} = 1\), then the value of the expression \[\left[ {{{\left(...

If sinA+(sinA)2=1\sin A + {\left( {\sin A} \right)^2} = 1, then the value of the expression [(cosA)2+(cosA)4]\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] is
A. 1 B. 12 C. 2 D. 3  {\text{A}}{\text{. 1}} \\\ {\text{B}}{\text{. }}\dfrac{1}{2} \\\ {\text{C}}{\text{. 2}} \\\ {\text{D}}{\text{. 3}} \\\

Explanation

Solution

Hint: Here, we will be using the formula (sinθ)2+(cosθ)2=1{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 in order to determine the values of (cosA)2{\left( {\cos A} \right)^2} and (cosA)4{\left( {\cos A} \right)^4} from the given equation which is sinA+(sinA)2=1\sin A + {\left( {\sin A} \right)^2} = 1 and then ultimately the expression whose value is required will appear as the LHS of the given equation.

Complete step-by-step answer:
Given, sinA+(sinA)2=1 (1) sinA=1(sinA)2 (2)  \sin A + {\left( {\sin A} \right)^2} = 1{\text{ }} \to {\text{(1)}} \\\ \Rightarrow \sin A = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(2)}} \\\
As we know that
(sinθ)2+(cosθ)2=1 (cosθ)2=1(sinθ)2 (3)  {\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\\ \Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2}{\text{ }} \to {\text{(3)}} \\\
Replacing the angle θ\theta with angle AA in equation (3), we get
(cosA)2=1(sinA)2 (4)\Rightarrow {\left( {\cos A} \right)^2} = 1 - {\left( {\sin A} \right)^2}{\text{ }} \to {\text{(4)}}
Clearly, the RHS of both the equations (2) and (4) are the same so the LHS of both the equations will also be equal.
sinA=(cosA)2 (5)\Rightarrow \sin A = {\left( {\cos A} \right)^2}{\text{ }} \to {\text{(5)}}
So, the value of the expression [(cosA)2+(cosA)4]\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] can be determined by little modification as under.
[(cosA)2+(cosA)4]=[(cosA)2+(cosA)2×(cosA)2]\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^2} \times {{\left( {\cos A} \right)}^2}} \right]
Using equation (5), we get

[(cosA)2+(cosA)4]=[sinA+(sinA)×(sinA)] [(cosA)2+(cosA)4]=[sinA+(sinA)2]  \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + \left( {\sin A} \right) \times \left( {\sin A} \right)} \right] \\\ \Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = \left[ {\sin A + {{\left( {\sin A} \right)}^2}} \right] \\\

Finally using the given equation (1), we get
[(cosA)2+(cosA)4]=1\Rightarrow \left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] = 1
Therefore, the value of the expression [(cosA)2+(cosA)4]\left[ {{{\left( {\cos A} \right)}^2} + {{\left( {\cos A} \right)}^4}} \right] is 1.

Hence, option A is correct.

Note: In this particular problem, we obtained the value of (cosA)2{\left( {\cos A} \right)^2} in terms of sinA\sin Ausing the given equation and some trigonometric formula. From there we represented the expression whose value is required in terms of (cosA)2{\left( {\cos A} \right)^2} which is ultimately converted in terms of sinA\sin A.