Solveeit Logo

Question

Question: If \(\sin A = \frac{4}{5}\)and \(\cos B = - \frac{12}{13},\) where A and B lie in first and third qu...

If sinA=45\sin A = \frac{4}{5}and cosB=1213,\cos B = - \frac{12}{13}, where A and B lie in first and third quadrant respectively, then cos(A+B)=\cos(A + B) =

A

5665\frac{56}{65}

B

5665- \frac{56}{65}

C

1665\frac{16}{65}

D

1665\frac{16}{65}

Answer

1665\frac{16}{65}

Explanation

Solution

We have sinA=45\sin A = \frac{4}{5} and cosB=1213\cos B = - \frac{12}{13}

Now, cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A\cos B - \sin A\sin B

=11625(1213)451144169= \sqrt{1 - \frac{16}{25}}\left( - \frac{12}{13} \right) - \frac{4}{5}\sqrt{1 - \frac{144}{169}}

=35×121345(513)=1665= - \frac{3}{5} \times \frac{12}{13} - \frac{4}{5}\left( - \frac{5}{13} \right) = - \frac{16}{65}

(Since A lies in first quadrant and B lies in third quadrant).