Question
Mathematics Question on Trigonometric Identities
If sinA=53 and cosB=1312, then find the value of (tanA+tanB).
We know:
tanA=cosAsinA,tanB=cosBsinB.
Step 1: Find cosA Using the Pythagorean identity:
sin2A+cos2A=1⟹cos2A=1−sin2A=1−(53)2=2516.
cosA=54.
Step 2: Find sinB Using the Pythagorean identity:
sin2B+cos2B=1⟹sin2B=1−cos2B=1−(1312)2=16925.
sinB=135.
Step 3: Calculate tanA and tanB
tanA=cosAsinA=5453=43,tanB=cosBsinB=1312135=125.
Step 4: Find (tanA+tanB)
tanA+tanB=43+125.
Taking the LCM of 4 and 12:
tanA+tanB=129+125=1214=67.
Correct Answer: 67.
Solution
We know:
tanA=cosAsinA,tanB=cosBsinB.
Step 1: Find cosA Using the Pythagorean identity:
sin2A+cos2A=1⟹cos2A=1−sin2A=1−(53)2=2516.
cosA=54.
Step 2: Find sinB Using the Pythagorean identity:
sin2B+cos2B=1⟹sin2B=1−cos2B=1−(1312)2=16925.
sinB=135.
Step 3: Calculate tanA and tanB
tanA=cosAsinA=5453=43,tanB=cosBsinB=1312135=125.
Step 4: Find (tanA+tanB)
tanA+tanB=43+125.
Taking the LCM of 4 and 12:
tanA+tanB=129+125=1214=67.
Correct Answer: 67.