Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If sinA=35\sin A = \frac{3}{5} and cosB=1213\cos B = \frac{12}{13}, then find the value of (tanA+tanB)(\tan A + \tan B).

Answer

We know:
tanA=sinAcosA,tanB=sinBcosB.\tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}.
Step 1: Find cosA\cos A Using the Pythagorean identity:
sin2A+cos2A=1    cos2A=1sin2A=1(35)2=1625.\sin^2 A + \cos^2 A = 1 \implies \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}.
cosA=45.\cos A = \frac{4}{5}.
Step 2: Find sinB\sin B Using the Pythagorean identity:
sin2B+cos2B=1    sin2B=1cos2B=1(1213)2=25169.\sin^2 B + \cos^2 B = 1 \implies \sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}.
sinB=513.\sin B = \frac{5}{13}.
Step 3: Calculate tanA\tan A and tanB\tan B
tanA=sinAcosA=3545=34,tanB=sinBcosB=5131213=512.\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}, \quad \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}.
Step 4: Find (tanA+tanB)(\tan A + \tan B)
tanA+tanB=34+512.\tan A + \tan B = \frac{3}{4} + \frac{5}{12}.
Taking the LCM of 4 and 12:
tanA+tanB=912+512=1412=76.\tan A + \tan B = \frac{9}{12} + \frac{5}{12} = \frac{14}{12} = \frac{7}{6}.
Correct Answer: 76\frac{7}{6}.

Explanation

Solution

We know:
tanA=sinAcosA,tanB=sinBcosB.\tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}.
Step 1: Find cosA\cos A Using the Pythagorean identity:
sin2A+cos2A=1    cos2A=1sin2A=1(35)2=1625.\sin^2 A + \cos^2 A = 1 \implies \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}.
cosA=45.\cos A = \frac{4}{5}.
Step 2: Find sinB\sin B Using the Pythagorean identity:
sin2B+cos2B=1    sin2B=1cos2B=1(1213)2=25169.\sin^2 B + \cos^2 B = 1 \implies \sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}.
sinB=513.\sin B = \frac{5}{13}.
Step 3: Calculate tanA\tan A and tanB\tan B
tanA=sinAcosA=3545=34,tanB=sinBcosB=5131213=512.\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}, \quad \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}.
Step 4: Find (tanA+tanB)(\tan A + \tan B)
tanA+tanB=34+512.\tan A + \tan B = \frac{3}{4} + \frac{5}{12}.
Taking the LCM of 4 and 12:
tanA+tanB=912+512=1412=76.\tan A + \tan B = \frac{9}{12} + \frac{5}{12} = \frac{14}{12} = \frac{7}{6}.
Correct Answer: 76\frac{7}{6}.