Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

If sin A = 34\frac{3}{4}, calculate cos A and tan A.

Answer

Let ΔABCΔABC be a right-angled triangle, right-angled at point B.

If sin A=3/4,calculate cos A and tan A.
Given that,
sin A=34\frac{3}{4}

BCAC=34\frac{BC}{AC}=\frac{3}{4}

Let BC be 3k. Therefore, AC will be 4k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC,ΔABC, we obtain
AC2=AB2+BC2\text{AC} ^2 = \text{AB} ^2 + \text{BC}^ 2
(4k)2=AB2+(3k)2(4k) ^2 = \text{AB}^ 2 + (3k)^ 2
16k29k2= AB216k ^2 - 9k^ 2 =\text{ AB}^ 2
7k2=AB27k ^2 = \text{AB}^ 2
AB=7k.AB =\sqrt7k.

 cos A=Side  Adjacent  to AHypotenuse\text{ cos A} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }{\text{Hypotenuse}}

ABAC=7k4k=74\frac{AB}{AC} =\frac{ \sqrt7k}{4k} =\frac{ \sqrt7}{4}

 tan A=Side  Opposite  to ASide  Adjacent  to A\text{ tan A} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠A }{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }

BCAB=3k7k=37\frac{BC}{AB} = \frac{3k}{\sqrt7k} =\frac{ 3}{\sqrt7}