Solveeit Logo

Question

Question: If \(\sin A=\dfrac{1}{2},A\in \left( \dfrac{\pi }{2},\pi \right)\) and \(\cos B=\dfrac{\sqrt{3}}{2},...

If sinA=12,A(π2,π)\sin A=\dfrac{1}{2},A\in \left( \dfrac{\pi }{2},\pi \right) and cosB=32,B(0,π2)\cos B=\dfrac{\sqrt{3}}{2},B\in \left( 0,\dfrac{\pi }{2} \right), then find the value of tan(A+B)\tan \left( A+B \right)

Explanation

Solution

Hint: Use the fact that in the first quadrant tan(x)\tan \left( x \right) is positive and in the second quadrant tan(x)\tan \left( x \right) is negative. Use tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}. Use the fact that if sinx=a\sin x=a, then tanx=±a1a2\tan x=\pm \dfrac{a}{\sqrt{1-{{a}^{2}}}} and if cosx=a\cos x=a, then tanx=±1a2a\tan x=\pm \dfrac{\sqrt{1-{{a}^{2}}}}{a}. Hence find the value of tanA and tanB and hence find the value of tan(A+B). Alternatively, find the values of cos(A) and cos(B) using cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1 and hence find the value of cos(A+B) using cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B and that of sin(A+B)\sin \left( A+B \right) using sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B

Complete step-by-step answer:
We have sinA=12\sin A=\dfrac{1}{2}
We know that if sinx=a\sin x=a, then tanx=±a1a2\tan x=\pm \dfrac{a}{\sqrt{1-{{a}^{2}}}}
Hence we have tanA=±121(12)2=±1232=13\tan A=\pm \dfrac{\dfrac{1}{2}}{\sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}}}=\pm \dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{1}{\sqrt{3}}
But since A(π2,π)A\in \left( \dfrac{\pi }{2},\pi \right), we have A lies in the second quadrant and since in second quadrant tan is negative, we have
tanA=13\tan A=-\dfrac{1}{\sqrt{3}}
Also, we have sinB=32\sin B=\dfrac{\sqrt{3}}{2}
We know that if cosx=a\cos x=a, then tanx=±1a2a\tan x=\pm \dfrac{\sqrt{1-{{a}^{2}}}}{a}.
Hence we have tanB=±1(32)232=±1232=±13\tan B=\pm \dfrac{\sqrt{1-{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}}{\dfrac{\sqrt{3}}{2}}=\pm \dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\pm \dfrac{1}{\sqrt{3}}
But since B(0,π2)B\in \left( 0,\dfrac{\pi }{2} \right), B lies in the first quadrant.
Since in first quadrant tan is positive, we have
tanB=13\tan B=\dfrac{1}{\sqrt{3}}
Now we know that tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
Hence we have
tan(A+B)=13+1311313=0\tan \left( A+B \right)=\dfrac{-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}}{1-\dfrac{-1}{\sqrt{3}}\dfrac{1}{\sqrt{3}}}=0
Hence tan(A+B)=0\tan \left( A+B \right)=0.

Note: Alternative solution:
We have sinA=12\sin A=\dfrac{1}{2}
Hence sin2A+cos2A=14+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=\dfrac{1}{4}+{{\cos }^{2}}A=1
Hence we have cosA=±32\cos A=\pm \dfrac{\sqrt{3}}{2}
Now since cos is negative in second quadrant, we have cosA=32\cos A=\dfrac{-\sqrt{3}}{2}
Similarly, we have sinB=12\sin B=\dfrac{1}{2}
Now we have sin(A+B)=sinAcosB+cosAsinB=12×32+(32)12=0\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\left( \dfrac{-\sqrt{3}}{2} \right)\dfrac{1}{2}=0
Also, cos(A+B)=cosAcosBsinAsinB=32321212=1\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B=\dfrac{-\sqrt{3}}{2}\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\dfrac{1}{2}=-1
Hence tan(A+B)=sin(A+B)cos(A+B)=01=0\tan \left( A+B \right)=\dfrac{\sin \left( A+B \right)}{\cos \left( A+B \right)}=\dfrac{0}{-1}=0, which is the same as obtained above,
[2] You can remember the sign of each trigonometric ratio in each quadrant with the mnemonic:
“Add Sugar To Coffee”
Add: All positive in the first quadrant
Sugar: Sine and Cosine(Inverse of sine) positive in the second quadrant.
To: Tangent and Cotangent positive in the third quadrant.
Coffee: cosine and secant positive in the fourth quadrant.