Solveeit Logo

Question

Question: If \(\sin A + \cos {\text{ec}}A = 3\) then find the value of \(\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^...

If sinA+cosecA=3\sin A + \cos {\text{ec}}A = 3 then find the value of sin4A+1sin2A\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}.

Explanation

Solution

As we know the condition that sinA+cosecA=3\sin A + \cos {\text{ec}}A = 3 and we also know that sinA.cosecA=1\sin A.\cos {\text{ec}}A = 1
Hence cosecA=1sinA\cos {\text{ec}}A = \dfrac{1}{{\sin A}} and by putting this value we can get the value of sinA\sin A and put it in sin4A+1sin2A\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}} and we will get the answer.

Complete step by step solution:
We are given that sinA+cosecA=3\sin A + \cos {\text{ec}}A = 3 (1) - - - - (1)
Now as we need to find the value of sin4A+1sin2A\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}} so we need to find the value of sinA\sin A which can be found the following condition which says that sinA+cosecA=3\sin A + \cos {\text{ec}}A = 3
And we know thatsinA.cosecA=1\sin A.\cos {\text{ec}}A = 1. So we can say that cosecA=1sinA\cos {\text{ec}}A = \dfrac{1}{{\sin A}} and therefore now by replacing the value of cosecA\cos {\text{ec}}Ain the equation (1), we will get
sinA+1sinA=3\sin A + \dfrac{1}{{\sin A}} = 3
Upon taking LCM we get that
sin2A+1sinA=3\dfrac{{{{\sin }^2}A + 1}}{{\sin A}} = 3
So we get that sin2x+1=3sinA{\sin ^2}x + 1 = 3\sin A
We can write it as
sin2x3sinA+1=0{\sin ^2}x - 3\sin A + 1 = 0
Hence we get the quadratic equation of the form ax2+bx+c=0a{x^2} + bx + c = 0 which takes two roots which are given by the formula
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Here we are given that
sin2x3sinA+1=0{\sin ^2}x - 3\sin A + 1 = 0
So sinA=(3)±(3)24(1)(1)2(1)\sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}
sinA=(3)±(3)24(1)(1)2(1)\Rightarrow \sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}
sinA=3±942\Rightarrow \sin A = \dfrac{{3 \pm \sqrt {9 - 4} }}{2}
sinA=3±52\Rightarrow \sin A = \dfrac{{3 \pm \sqrt 5 }}{2}
So we get two values of sinA\sin A
sinA=3+52,sinA=352\Rightarrow \sin A = \dfrac{{3 + \sqrt 5 }}{2},\sin A = \dfrac{{3 - \sqrt 5 }}{2}
But we know that 0sinA10 \leqslant \sin A \leqslant 1
But we know that 3+52>1\dfrac{{3 + \sqrt 5 }}{2} > 1
Hence we get that sinA=352\sin A = \dfrac{{3 - \sqrt 5 }}{2}
So we need to find the value of sin4A+1sin2A\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}
sin2A+1sin2A\Rightarrow {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}
sinA=352\Rightarrow \sin A = \dfrac{{3 - \sqrt 5 }}{2}
sin2A=(352)2\Rightarrow {\sin ^2}A = {\left( {\dfrac{{3 - \sqrt 5 }}{2}} \right)^2}
Therefore upon squaring we get that
sin2A=(32+(5)22.3.522)\Rightarrow {\sin ^2}A = \left( {\dfrac{{{3^2} + {{(\sqrt 5 )}^2} - 2.3.\sqrt 5 }}{{{2^2}}}} \right)
sin2A=(9+5654)\Rightarrow {\sin ^2}A = \left( {\dfrac{{9 + 5 - 6\sqrt 5 }}{4}} \right)
sin2A=(14654)=(7352)\Rightarrow {\sin ^2}A = \left( {\dfrac{{14 - 6\sqrt 5 }}{4}} \right) = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right)
Now for 1sin2A\dfrac{1}{{{{\sin }^2}A}} =2735×7+357+35 = \dfrac{2}{{7 - 3\sqrt 5 }} \times \dfrac{{7 + 3\sqrt 5 }}{{7 + 3\sqrt 5 }}
On rationalising we get that
1sin2A\dfrac{1}{{{{\sin }^2}A}} =2(7+35)4945=2(7+35)4=(7+35)2 = \dfrac{{2(7 + 3\sqrt 5 )}}{{49 - 45}} = \dfrac{{2(7 + 3\sqrt 5 )}}{4} = \dfrac{{(7 + 3\sqrt 5 )}}{2}
Now we need to find the value of sin2A+1sin2A{\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}
So as we have got sin2A+1sin2A{\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}} =(7352)+(7+352) = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right) + \left( {\dfrac{{7 + 3\sqrt 5 }}{2}} \right)
=(735+7+352)= \left( {\dfrac{{7 - 3\sqrt 5 + 7 + 3\sqrt 5 }}{2}} \right)

=(142)=7 = \left( {\dfrac{{14}}{2}} \right) = 7

Note:
We can also solve it in this way that as we know
sin4A+1sin2A\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}} =sin2A+1sin2A=sin2A+cosec2A = {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}} = {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A
And we are given that
sinA+cosecA=3\sin A + \cos {\text{ec}}A = 3
Upon squaring both sides we get that
sin2A+cosec2A+2sinA.cosecA=9 sin2A+cosec2A+2=9 sin2A+cosec2A=7  \Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2\sin A.\cos {\text{ec}}A = 9 \\\ \Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2 = 9 \\\ \Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A = 7 \\\