Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If sinA+cosB=a\sin \, A + \cos \, B = a and sinB+cosA=b\sin \, B + \cos \, A = b, then sin(A+B)\sin (A + B) is equal to

A

a2+b22\frac{a^2 + b^2}{2}

B

a2b2+22\frac{a^2 - b^2 + 2 }{2}

C

a2+b222\frac{a^2 + b^2 - 2 }{2}

D

None of these

Answer

a2+b222\frac{a^2 + b^2 - 2 }{2}

Explanation

Solution

sinA+cosB=a\sin A +\cos B = a \ldots (i)
sinB+cosA=b\sin B +\cos A = b \ldots (ii)
Squaring and adding (i) and (ii)
sin2A+cos2B+2sinAcosB+sin2B+cos2A+2cosAsinB=a2+b2\sin ^{2} A +\cos ^{2} B +2 \sin A \cos B +\sin ^{2} B +\cos ^{2} A +2 \cos A \sin B = a ^{2}+ b ^{2}
sin2A+cos2A+sin2B+cos2B+2(sinAcosB+cosAsinB)=a2+b2\sin ^{2} A +\cos ^{2} A +\sin ^{2} B +\cos ^{2} B +2(\sin A \cos B +\cos A \sin B )= a ^{2}+ b ^{2}
1+1+2sin(A+B)=a2+b21+1+2 \sin ( A + B )= a ^{2}+ b ^{2}
sin(A+B)=a2+b222\Rightarrow \sin ( A + B )=\frac{ a ^{2}+ b ^{2}-2}{2}