Question
Question: If \( \sin A=\cos A \), then find the value of A in degrees....
If sinA=cosA, then find the value of A in degrees.
Solution
There are many possible values of angle A.
This is a trigonometric equation of the form Asinx±Bcosx=C. We define siny=A2+B2A and cosy=A2+B2A, so that y=tan−1BA.
Using the identity cos(A±B)=cosAcosB∓sinAsinB, the equation simplifies to:
cos(x±y)=A2+B2C.
The solution is x=2nπ±cos−1A2+B2C±y,n∈Z.
Recall that sin45∘=21, cos45∘=21 and tan45∘=1.
Complete step by step answer:
Given that sinA=cosA.
⇒ sinA−cosA=0 ... (1)
Comparing this with the equations of the type Asinx−Bcosx=C, we have:
A=1,B=1,C=0
Let's say that siny=A2+B2A=12+(−1)21=21 and cosy=A2+B2B=12+(−1)21=21, so that y=tan−1AB=tan−111=tan−11=45∘.
Dividing equation (1) by 2, we get:
⇒ 21sinA−21cosA=0
Substituting sin45∘=21 and cos45∘=21, we get:
⇒ sin45∘sinA−cos45∘cosA=0
Multiplying by -1, we get:
⇒ cos45∘cosA−sin45∘sinA=0
Using the identity cos(A+B)=cosAcosB−sinAsinB, we get:
⇒ cos(45∘+A)=0=cos90∘
Since the period of cosθ is 2π radians=360∘, we can write:
⇒ cos(45∘+A)=cos(360∘n±90∘),n∈Z
⇒ 45∘+A=360∘n±90∘,n∈Z
⇒ A=360∘n+45∘ OR A=360∘n−135∘, n∈Z
Substituting n=...,−2,−1,0,1,2,... etc., we get:
⇒ A=...,−855∘,−675∘,−495∘−315∘,−135∘,45∘,225∘,405∘,585∘,765∘,...
Note: The question can also be solved by using the fact that tan45∘=1 and that the period of tanθ is π, i.e. tanθ=tan(nπ+θ),n∈Z.
The value of sinθ and cosθ lies between -1 and 1.
sin(−θ)=−sinθ and cos(−θ)=cosθ.
Trigonometric Ratios for Allied Angles:
sin(−θ)=−sinθ cos(−θ)=cosθ
sin(2nπ+θ)=sinθ cos(2nπ+θ)=cosθ
sin(nπ+θ)=(−1)nsinθ cos(nπ+θ)=(−1)ncosθ
sin[(2n+1)2π+θ]=(−1)ncosθ cos[(2n+1)2π+θ]=(−1)n(−sinθ)