Solveeit Logo

Question

Question: If \( \sin A=\cos A \), then find the value of A in degrees....

If sinA=cosA\sin A=\cos A, then find the value of A in degrees.

Explanation

Solution

There are many possible values of angle A.
This is a trigonometric equation of the form Asinx±Bcosx=CA\sin x\pm B\cos x=C. We define siny=AA2+B2\sin y=\dfrac{A}{\sqrt{{{A}^{2}}+{{B}^{2}}}} and cosy=AA2+B2\cos y=\dfrac{A}{\sqrt{{{A}^{2}}+{{B}^{2}}}}, so that y=tan1ABy={{\tan }^{-1}}\dfrac{A}{B}.
Using the identity cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B, the equation simplifies to:
cos(x±y)=CA2+B2\cos (x\pm y)=\dfrac{C}{\sqrt{{{A}^{2}}+{{B}^{2}}}}.
The solution is x=2nπ±cos1CA2+B2±y,nZx=2n\pi \pm {{\cos }^{-1}}\dfrac{C}{\sqrt{{{A}^{2}}+{{B}^{2}}}}\pm y,n\in \mathbb{Z}.
Recall that sin45=12\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}, cos45=12\cos 45{}^\circ =\dfrac{1}{\sqrt{2}} and tan45=1\tan 45{}^\circ =1.

Complete step by step answer:
Given that sinA=cosA\sin A=\cos A.
sinAcosA=0\sin A-\cos A=0 ... (1)
Comparing this with the equations of the type AsinxBcosx=CA\sin x-B\cos x=C, we have:
A=1,B=1,C=0A=1,B=1,C=0
Let's say that siny=AA2+B2=112+(1)2=12\sin y=\dfrac{A}{\sqrt{{{A}^{2}}+{{B}^{2}}}}=\dfrac{1}{\sqrt{{{1}^{2}}+{{(-1)}^{2}}}}=\dfrac{1}{\sqrt{2}} and cosy=BA2+B2=112+(1)2=12\cos y=\dfrac{B}{\sqrt{{{A}^{2}}+{{B}^{2}}}}=\dfrac{1}{\sqrt{{{1}^{2}}+{{(-1)}^{2}}}}=\dfrac{1}{\sqrt{2}}, so that y=tan1BA=tan111=tan11=45y={{\tan }^{-1}}\dfrac{B}{A}={{\tan }^{-1}}\dfrac{1}{1}={{\tan }^{-1}}1=45{}^\circ.
Dividing equation (1) by 2\sqrt{2}, we get:
12sinA12cosA=0\dfrac{1}{\sqrt{2}}\sin A-\dfrac{1}{\sqrt{2}}\cos A=0
Substituting sin45=12\sin 45{}^\circ =\dfrac{1}{\sqrt{2}} and cos45=12\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}, we get:
sin45sinAcos45cosA=0\sin 45{}^\circ \sin A-\cos 45{}^\circ \cos A=0
Multiplying by -1, we get:
cos45cosAsin45sinA=0\cos 45{}^\circ \cos A-\sin 45{}^\circ \sin A=0
Using the identity cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B, we get:
cos(45+A)=0=cos90\cos (45{}^\circ +A)=0=\cos 90{}^\circ
Since the period of cosθ\cos \theta is 2π radians=3602\pi \text{ radians}=360{}^\circ, we can write:
cos(45+A)=cos(360n±90),nZ\cos (45{}^\circ +A)=\cos (360{}^\circ n\pm 90{}^\circ ),n\in \mathbb{Z}
45+A=360n±90,nZ45{}^\circ +A=360{}^\circ n\pm 90{}^\circ,n\in \mathbb{Z}
A=360n+45A=360{}^\circ n+45{}^\circ OR A=360n135A=360{}^\circ n-135{}^\circ, nZn\in \mathbb{Z}
Substituting n=...,2,1,0,1,2,...n=...,-2,-1,0,1,2,... etc., we get:
A=...,855,675,495315,135,45,225,405,585,765,...A=...,-855{}^\circ,-675{}^\circ,-495{}^\circ -315{}^\circ,-135{}^\circ,45{}^\circ,225{}^\circ,405{}^\circ,585{}^\circ,765{}^\circ,...

Note: The question can also be solved by using the fact that tan45=1\tan 45{}^\circ =1 and that the period of tanθ\tan \theta is π\pi, i.e. tanθ=tan(nπ+θ),nZ\tan \theta =\tan (n\pi +\theta ),n\in \mathbb{Z}.
The value of sinθ\sin \theta and cosθ\cos \theta lies between -1 and 1.
sin(θ)=sinθ\sin (-\theta )=-\sin \theta and cos(θ)=cosθ\cos (-\theta )=\cos \theta.

Trigonometric Ratios for Allied Angles:
sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta
sin(2nπ+θ)=sinθ\sin \left( 2n\pi +\theta \right)=\sin \theta cos(2nπ+θ)=cosθ\cos \left( 2n\pi +\theta \right)=\cos \theta
sin(nπ+θ)=(1)nsinθ\sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta cos(nπ+θ)=(1)ncosθ\cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta
sin[(2n+1)π2+θ]=(1)ncosθ\sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta cos[(2n+1)π2+θ]=(1)n(sinθ)\cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right)