Solveeit Logo

Question

Question: If \(\sin A,\cos A,\tan A\) are in G.P. then \({\cot ^6}A - {\cot ^2}A\) =? (A) -1 (B) 1 (C) 0...

If sinA,cosA,tanA\sin A,\cos A,\tan A are in G.P. then cot6Acot2A{\cot ^6}A - {\cot ^2}A =?
(A) -1
(B) 1
(C) 0
(D) 2

Explanation

Solution

Hint: In order to solve the problem start with the terms in the G.P. Use the property of G.P. in order to form the equation of the required form by the use of trigonometric identities such as
sec2θ=1+tan2θ,1cosθ=secθ and tanθ=1cotθ{\sec ^2}\theta = 1 + {\tan ^2}\theta ,\dfrac{1}{{\cos \theta }} = \sec \theta {\text{ and }}\tan \theta = \dfrac{1}{{\cot \theta }}

Complete step-by-step answer:

Given that sinA,cosA,tanA\sin A,\cos A,\tan A are in G.P.
We have to find the value of cot6Acot2A{\cot ^6}A - {\cot ^2}A
As we know that if any general term a,b,ca,b,c are in G.P. then it can be expressed as b2=ac{b^2} = ac
By applying this property on the given G.P. terms sinA,cosA,tanA\sin A,\cos A,\tan A we get:
cos2A=sinAtanA\Rightarrow {\cos ^2}A = \sin A\tan A --(1)
Now we will try to make cot6A{\cot ^6}A from the above equation.
As we know that tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} ---(2)
Substituting equation (2) in equation (1) we get
cos2A=sinAtanA cos2A=sinA(sinAcosA) cos2A=sin2AcosA cos2Asin2A=1cosA  \Rightarrow {\cos ^2}A = \sin A\tan A \\\ \Rightarrow {\cos ^2}A = \sin A\left( {\dfrac{{\sin A}}{{\cos A}}} \right) \\\ \Rightarrow {\cos ^2}A = \dfrac{{{{\sin }^2}A}}{{\cos A}} \\\ \Rightarrow \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{1}{{\cos A}} \\\
In the above equation we have tried to bring the equation in form of cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A
Now, we will substitute the value 1cosA=secA\dfrac{1}{{\cos A}} = \sec A in the above equation, so we have:
cos2Asin2A=1cosA=secA cot2A=secA [cosAsinA=cotA]  \Rightarrow \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{1}{{\cos A}} = \sec A \\\ \Rightarrow {\cot ^2}A = \sec A{\text{ }}\left[ {\because \dfrac{{\cos A}}{{\sin A}} = \cot A} \right] \\\
Now let us take square of both the side
cot4A=sec2A\Rightarrow {\cot ^4}A = {\sec ^2}A
Now let us convert secA into tanA\sec A{\text{ into }}\tan A
cot4A=sec2A=1+tan2A [1+tan2A=sec2A] cot4A=1+(tanA)2 cot4A=1+(1cotA)2 [tanA=1cotA] cot4A=1+1cot2A  \Rightarrow {\cot ^4}A = {\sec ^2}A = 1 + {\tan ^2}A{\text{ }}\left[ {\because 1 + {{\tan }^2}A = {{\sec }^2}A} \right] \\\ \Rightarrow {\cot ^4}A = 1 + {\left( {\tan A} \right)^2} \\\ \Rightarrow {\cot ^4}A = 1 + {\left( {\dfrac{1}{{\cot A}}} \right)^2}{\text{ }}\left[ {\because \tan A = \dfrac{1}{{\cot A}}} \right] \\\ \Rightarrow {\cot ^4}A = 1 + \dfrac{1}{{{{\cot }^2}A}} \\\
Now let us take LCM on the RHS and proceed to form the equation

cot4A=cot2A+1cot2A cot4A×cot2A=cot2A+1 cot(4+2)A=cot2A+1 [am×an=am+n] cot6A=cot2A+1 cot6Acot2A=1  \Rightarrow {\cot ^4}A = \dfrac{{{{\cot }^2}A + 1}}{{{{\cot }^2}A}} \\\ \Rightarrow {\cot ^4}A \times {\cot ^2}A = {\cot ^2}A + 1 \\\ \Rightarrow {\cot ^{\left( {4 + 2} \right)}}A = {\cot ^2}A + 1{\text{ }}\left[ {\because {a^m} \times {a^n} = {a^{m + n}}} \right] \\\ \Rightarrow {\cot ^6}A = {\cot ^2}A + 1 \\\ \Rightarrow {\cot ^6}A - {\cot ^2}A = 1 \\\

Hence, the required value of cot6Acot2A=1{\cot ^6}A - {\cot ^2}A = 1 .
So, option B is the correct option.

Note: A geometric progression, also known as a geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. In order to solve such problems, never try to find the values of the angle given like A. These types of problems can be done only by manipulation of the trigonometric identities in order to bring in the required form. Students must remember the trigonometric identities used.