Solveeit Logo

Question

Question: If \(\sin A+\cos A=\dfrac{7}{5}\) and \(\sin A\cos A=\dfrac{12}{25}\), find the values of \(\sin A\)...

If sinA+cosA=75\sin A+\cos A=\dfrac{7}{5} and sinAcosA=1225\sin A\cos A=\dfrac{12}{25}, find the values of sinA\sin A and cosA\cos A.

Explanation

Solution

Hint:Use the relation: sinAcosA=1225\sin A\cos A=\dfrac{12}{25} and write cosA\cos A in terms of sinA\sin A. Substitute the value of cosA\cos A in the relation: sinA+cosA=75\sin A+\cos A=\dfrac{7}{5} to obtain a quadratic equation in sinA\sin A. Solve this quadratic equation by the help of middle term split and get the values of sinA\sin A. Corresponding to these values of sinA\sin A, find the values of cosA\cos A using first relation.

Complete step-by-step answer:
We have been provided with two equations:
sinA+cosA=75.................(i)\sin A+\cos A=\dfrac{7}{5}.................(i)
sinAcosA=1225...................(ii)\sin A\cos A=\dfrac{12}{25}...................(ii)
Now, from equation (ii), we have,
sinAcosA=1225 cosA=1225sinA \begin{aligned} & \sin A\cos A=\dfrac{12}{25} \\\ & \Rightarrow \cos A=\dfrac{12}{25\sin A} \\\ \end{aligned}
Substituting this value of cosA\cos A in equation (i), we have,
sinA+1225sinA=75\sin A+\dfrac{12}{25\sin A}=\dfrac{7}{5}
Taking L.C.M we get,
25sin2A+1225sinA=75 25sin2A+125sinA=7 \begin{aligned} & \dfrac{25{{\sin }^{2}}A+12}{25\sin A}=\dfrac{7}{5} \\\ & \Rightarrow \dfrac{25{{\sin }^{2}}A+12}{5\sin A}=7 \\\ \end{aligned}
By cross-multiplication, we get,
25sin2A+12=35sinA 25sin2A35sinA+12=0 \begin{aligned} & 25{{\sin }^{2}}A+12=35\sin A \\\ & \Rightarrow 25{{\sin }^{2}}A-35\sin A+12=0 \\\ \end{aligned}
This is a quadratic equation with its variable as: sinA\sin A. Now, splitting the middle term, we get,
25sin2A15sinA20sinA+12=0 5sinA(5sinA3)4(5sinA3)=0 (5sinA3)(5sinA4)=0 \begin{aligned} & 25{{\sin }^{2}}A-15\sin A-20\sin A+12=0 \\\ & \Rightarrow 5\sin A\left( 5\sin A-3 \right)-4\left( 5\sin A-3 \right)=0 \\\ & \Rightarrow \left( 5\sin A-3 \right)\left( 5\sin A-4 \right)=0 \\\ \end{aligned}
Substituting each term equal to 0, we get,
(5sinA3)=0 or (5sinA4)=0 5sinA=3 or 5sinA=4 sinA=35 or sinA=45 \begin{aligned} & \left( 5\sin A-3 \right)=0\text{ or }\left( 5\sin A-4 \right)=0 \\\ & \Rightarrow 5\sin A=3\text{ or }5\sin A=4 \\\ & \Rightarrow \sin A=\dfrac{3}{5}\text{ or }\sin A=\dfrac{4}{5} \\\ \end{aligned}
We have obtained two values of sinA\sin A and we have to find the values of cosA\cos A corresponding to these. Using equation (i): sinA+cosA=75\sin A+\cos A=\dfrac{7}{5}, we have,
Case (i): When sinA=35\sin A=\dfrac{3}{5}.

& \Rightarrow \dfrac{3}{5}+\cos A=\dfrac{7}{5} \\\ & \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{3}{5} \\\ & \Rightarrow \cos A=\dfrac{7-3}{5} \\\ & \Rightarrow \cos A=\dfrac{4}{5} \\\ \end{aligned}$$ Case (ii): When $\sin A=\dfrac{4}{5}$. $$\begin{aligned} & \Rightarrow \dfrac{4}{5}+\cos A=\dfrac{7}{5} \\\ & \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{4}{5} \\\ & \Rightarrow \cos A=\dfrac{7-4}{5} \\\ & \Rightarrow \cos A=\dfrac{3}{5} \\\ \end{aligned}$$ Hence, the values of $\sin A$ are: $\dfrac{3}{5}$ and $\dfrac{4}{5}$ and the corresponding values of $\cos A$ are: $\dfrac{4}{5}$ and $\dfrac{3}{5}$. Note: One may note that, we can also substitute the value of $\sin A$ from relation (ii), in relation (i). The answer will be the same. Here, we have to consider both the values of $\sin A$ and $\cos A$ because they are both satisfying the equations and are in the range of these functions. There is nothing on the basis of which one value can be rejected.