Solveeit Logo

Question

Question: If sin (a + b) sin (a – b) = sin g (2 sinb + sing), 0 \<a, b, g\<p, then the family of lines sinax +...

If sin (a + b) sin (a – b) = sin g (2 sinb + sing), 0 <a, b, g<p, then the family of lines sinax + sin by + sing = 0 passes through

A

(–1, 1)

B

(1 , 1)

C

(1, –1)

D

(–1, –1)

Answer

(–1, 1)

Explanation

Solution

sin (a + b) sin (a – b) = sin g(2 sin b + sin g)

(2 sin b + sin g)

Ž sin2 a – sin2 b = 2 sin b sin g + sin2 g

Ž sin2 a – (sin b + sin g)2 = 0

Ž (sin a – sin b – sin g) (sin a + sin b + sin g) = 0

Since, 0 < a, b, g < p

So, sin a + sin b, sin g > 0

sin a + sin b + sin g ¹ 0

So, sin a – sin b – sin g = 0

or, (–1) sin a + 1 . sin b + sin g = 0

Hence x sin a + y sin b + sin g = 0

passes through (–1, 1).