Question
Mathematics Question on Continuity and differentiability
If sin(α+β)=6sin(α−β) and k=tanαtanβ, then, what is the value of k ?
A
(A) 35
B
(B) 65
C
(C) 45
D
(D) 75
Answer
(D) 75
Explanation
Solution
Explanation:
Given,sin(α+β)=6sin(α−β) and k=tanαtanβsin(α+β)=6sin(α−β)⇒sinαcosβ+cosαsinβ=6sinαcosβ−6cosαsinβ⇒cosαsinβ+6cosαsinβ=6sinαcosβ−sinαcosβ⇒7cosαsinβ=5sinαcosβ⇒sinαcosα=75×sinβcosβ⇒ tan α=75×tanβ⇒k=tanαtanβ=75∴ The value of k is 75
Hence, the correct option is (D).