Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If sin⁡(α+β)=6sin⁡(α−β) and k=tan⁡αtan⁡β, then, what is the value of k ?

A

(A) 35

B

(B) 65

C

(C) 45

D

(D) 75

Answer

(D) 75

Explanation

Solution

Explanation:
Given,sin⁡(α+β)=6sin⁡(α−β) and k=tan⁡αtan⁡βsin⁡(α+β)=6sin⁡(α−β)⇒sin⁡αcos⁡β+cos⁡αsin⁡β=6sin⁡αcos⁡β−6cos⁡αsin⁡β⇒cos⁡αsin⁡β+6cos⁡αsin⁡β=6sin⁡αcos⁡β−sin⁡αcos⁡β⇒7cos⁡αsin⁡β=5sin⁡αcos⁡β⇒sin⁡αcos⁡α=75×sin⁡βcos⁡β⇒ tan α=75×tan⁡β⇒k=tan⁡αtan⁡β=75∴ The value of k is 75
Hence, the correct option is (D).