Solveeit Logo

Question

Question: If \(\sin 6\theta + \sin 4\theta + \sin 2\theta = 0\), then the general value of \(\Rightarrow 2\sin...

If sin6θ+sin4θ+sin2θ=0\sin 6\theta + \sin 4\theta + \sin 2\theta = 0, then the general value of 2sin4θcos2θ+sin4θ=0\Rightarrow 2\sin 4\theta\cos 2\theta + \sin 4\theta = 0 is.

A

\Rightarrow

B

sin4θ(2cos2θ+1)=0\sin 4\theta(2\cos 2\theta + 1) = 0

C

\Rightarrow

D

2cos2θ=12\cos 2\theta = - 1

Answer

\Rightarrow

Explanation

Solution

\Rightarrow

sin(π4+2θ)+cos(π4+2θ)=12\sin\left( \frac{\pi}{4} + 2\theta \right) + \cos\left( \frac{\pi}{4} + 2\theta \right) = \frac{1}{\sqrt{2}} \Rightarrow

cos2θ=122θ=2nπ±π3θ=nπ±π6\cos 2\theta = \frac{1}{2} \Rightarrow 2\theta = 2n\pi \pm \frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{6} (tanθ3)(tanθ1)=0( \tan \theta - \sqrt { 3 } ) ( \tan \theta - 1 ) = 0 cosθ=3±9+84=3±174\cos\theta = \frac{- 3 \pm \sqrt{9 + 8}}{4} = \frac{- 3 \pm \sqrt{17}}{4} \Rightarrow, θ=2nπ±cos1(3+174)\theta = 2n\pi \pm \cos^{- 1}\left( \frac{- 3 + \sqrt{17}}{4} \right).