Question
Question: If \(\sin 6\theta + \sin 4\theta + \sin 2\theta = 0\), then the general value of \(\Rightarrow 2\sin...
If sin6θ+sin4θ+sin2θ=0, then the general value of ⇒2sin4θcos2θ+sin4θ=0 is.
A
⇒
B
sin4θ(2cos2θ+1)=0
C
⇒
D
2cos2θ=−1
Answer
⇒
Explanation
Solution
⇒
sin(4π+2θ)+cos(4π+2θ)=21⇒
cos2θ=21⇒2θ=2nπ±3π⇒θ=nπ±6π (tanθ−3)(tanθ−1)=0 cosθ=4−3±9+8=4−3±17⇒, θ=2nπ±cos−1(4−3+17).