Solveeit Logo

Question

Question: If \(\sin 6\theta = 32\cos^{5}\theta.\sin\theta - 32\cos^{3}\theta\sin\theta + 3x,\) then x =...

If sin6θ=32cos5θ.sinθ32cos3θsinθ+3x,\sin 6\theta = 32\cos^{5}\theta.\sin\theta - 32\cos^{3}\theta\sin\theta + 3x, then x =

A

cosθ\cos\theta

B

cos2θ\cos 2\theta

C

sinθ\sin\theta

D

sin2θ\sin 2\theta

Answer

sin2θ\sin 2\theta

Explanation

Solution

sin6θ=2sin3θ.cos3θ\sin 6\theta = 2\sin 3\theta.\cos 3\theta =

2[3sinθ4sin3θ][4cos3θ3cosθ]2\lbrack 3\sin\theta - 4\sin^{3}\theta\rbrack\lbrack 4\cos^{3}\theta - 3\cos\theta\rbrack =tanA=32tanB=32t\tan A = \frac{3}{2}\tan B = \frac{3}{2}t = 32cos5θ.sinθ32cos3θ.sinθ+3sin2θ32\cos^{5}\theta.\sin\theta - 32\cos^{3}\theta.\sin\theta + 3\sin 2\thetaOn comparing,

2tanA=3tanB2\tan A = 3\tan B

Trick : Put θ=0o\theta = 0^{o}, then x=0x = 0. So, option (3) and (4) are correct.

Now put θ=30o\theta = 30^{o}, thenx=32x = \frac{\sqrt{3}}{2}. Therefore, Only option (4) is correct.