Question
Question: If \(\sin 6\theta = 32\cos^{5}\theta.\sin\theta - 32\cos^{3}\theta\sin\theta + 3x,\) then x =...
If sin6θ=32cos5θ.sinθ−32cos3θsinθ+3x, then x =
A
cosθ
B
cos2θ
C
sinθ
D
sin2θ
Answer
sin2θ
Explanation
Solution
sin6θ=2sin3θ.cos3θ =
2[3sinθ−4sin3θ][4cos3θ−3cosθ] =tanA=23tanB=23t = 32cos5θ.sinθ−32cos3θ.sinθ+3sin2θOn comparing,
2tanA=3tanB
Trick : Put θ=0o, then x=0. So, option (3) and (4) are correct.
Now put θ=30o, thenx=23. Therefore, Only option (4) is correct.