Solveeit Logo

Question

Question: If \( \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} \) . Find \...

If sin6sin42sin66sin78=12a\sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} . Find aa

Explanation

Solution

Hint : To find aa, first we should solve the left-hand side and then equating the value obtained on the left-hand side, we will be able to find the value of aa. To simplify the left-hand side, we will be using a cofunction identity: sinx=cos(90x)\sin x = \cos (90 - x) and a double angle formula: sin2x=2sinxcosx\sin 2x = 2\sin x\cos x.

Complete step by step solution:
The given question is sin6sin42sin66sin78=12a\sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} . We have to find the value of aa .
First, let us only consider Left-hand side,
That is, sin6sin42sin66sin78\sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ }
To this let us multiply and divide by 2cos62\cos {6^\circ }
2cos6sin6sin42sin66sin782cos6\Rightarrow \dfrac{{2\cos {6^\circ }\sin {6^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}}
We will be clubbing the first 3 terms and rearranging them in the numerator,
(2sin6cos6)sin42sin66sin782cos6\Rightarrow \dfrac{{(2\sin {6^\circ }\cos {6^ \circ })\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}}
This was done so that we could apply double angle formula, that is sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
So, the above equation becomes,
(sin2(6))sin42sin66sin782cos6\Rightarrow \dfrac{{(\sin 2({6^ \circ }))\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}}
sin12sin42sin66sin782cos6\Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}}
From cofunction identity, we know that, sinx=cos(90x)\sin x = \cos (90 - x)
So, sin78\sin {78^\circ } can be written as:

sin78=cos(9078) sin78=cos12   \sin {78^\circ } = \cos {(90 - 78)^\circ } \\\ \Rightarrow \sin {78^\circ } = \cos {12^\circ } \;

Substituting this in sin12sin42sin66sin782cos6\dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} , we get:
sin12sin42sin66cos122cos6\Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\cos {{12}^\circ }}}{{2\cos {6^\circ }}}
Again, rearranging the terms, we get
sin12cos12sin42sin662cos6\Rightarrow \dfrac{{\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2\cos {6^\circ }}}
Let us again multiply and divide by 22 ,
2sin12cos12sin42sin662×2cos6\Rightarrow \dfrac{{2\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2 \times 2\cos {6^\circ }}}
We shall again make use of double angle formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
sin2×12sin42sin664cos6 sin24sin42sin664cos6   \Rightarrow \dfrac{{\sin 2 \times{{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \\\ \Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \;
Following the same procedure as earlier, we may write sin66\sin 66^\circ as
sin66=cos(9066) sin66=cos24   \sin 66^\circ = \cos (90 - 66) \\\ \Rightarrow \sin 66^\circ = \cos {24^\circ } \;
Using this, sin24sin42sin664cos6\dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} becomes:
sin24sin42cos244cos6\Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\cos {{24}^\circ }}}{{4\cos {6^\circ }}}
Again, multiplying and dividing by 22 and rearranging the terms, we write:
2sin24cos24sin422×4cos6\Rightarrow \dfrac{{2\sin {{24}^ \circ }\cos {{24}^\circ }\sin {{42}^\circ }}}{{2 \times 4\cos {6^\circ }}}
We will use double angle formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x

sin2×24sin428cos6 sin48sin428cos6   \Rightarrow \dfrac{{\sin 2 \times{{24}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \\\ \Rightarrow \dfrac{{\sin {{48}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \;

sin48\sin {48^\circ } can again be written as:
sin48=cos(9048) sin48=cos42   \sin {48^\circ } = \cos {(90 - 48)^\circ } \\\ \Rightarrow \sin {48^\circ } = \cos {42^\circ } \;
On substituting this, we get
cos42sin428cos6\dfrac{{\cos {{42}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}}
Multiplying and dividing by 22 ,
2sin42cos422×8cos6\dfrac{{2\sin {{42}^\circ }\cos {{42}^ \circ }}}{{2 \times 8\cos {6^\circ }}}
using double angle formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x , we get:

sin2×4216cos6 sin8416cos6   \dfrac{{\sin 2 \times{{42}^\circ }}}{{16\cos {6^\circ }}} \\\ \Rightarrow \dfrac{{\sin {{84}^\circ }}}{{16\cos {6^\circ }}} \;

sin84\sin {84^\circ } can be written as
sin84=cos(9084) sin84=cos6   \sin {84^\circ } = \cos {(90 - 84)^\circ } \\\ \Rightarrow \sin {84^\circ } = \cos {6^\circ } \;
Substitute this in the previous step,
cos616cos6\Rightarrow \dfrac{{\cos {6^\circ }}}{{16\cos {6^\circ }}}
Since, cos6\cos {6^\circ } is a common term in both numerator and denominator, they get cancelled off.
Thus, in the left-hand side we have, 116\dfrac{1}{{16}}
Equating left-hand side and right-hand side, we get:
116=12a\dfrac{1}{{16}} = \dfrac{1}{{2a}}
Taking reciprocal of both the sides and rearranging them, we get
2a=162a = 16
Dividing both the sides by 22 ,
2a2=162 a=8   \Rightarrow \dfrac{{2a}}{2} = \dfrac{{16}}{2} \\\ \Rightarrow a = 8 \;
Thus, the value of aa is 88 .
So, the correct answer is “a=8”.

Note : Solving the above given problem using the transformation formula sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \dfrac{1}{2}\left[ {\cos (A - B) - \cos (A + B)} \right] will make the solution more complicated. Hence, it is recommended to follow the above method to solve these types of problems.