Solveeit Logo

Question

Question: If \[\sin 5x + \sin 3x + \sin x = 0\], then the value of \(x\) other than zero, lying between \[0 < ...

If sin5x+sin3x+sinx=0\sin 5x + \sin 3x + \sin x = 0, then the value of xx other than zero, lying between 0<xπ20 < x \leqslant \dfrac{\pi }{2} is:

a. π6 b. π12 c. π3 d. π4  a.{\text{ }}\dfrac{\pi }{6} \\\ b.{\text{ }}\dfrac{\pi }{{12}} \\\ c.{\text{ }}\dfrac{\pi }{3} \\\ d.{\text{ }}\dfrac{\pi }{4} \\\
Explanation

Solution

Hint- Use sinc+sind=2sin(c+d2)cos(cd2)\sin c + \sin d = 2\sin \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right)
As we know sinc+sind=2sin(c+d2)cos(cd2)\sin c + \sin d = 2\sin \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right)
So, apply this property in given equation

sin5x+sin3x+sinx=0 sin5x+sinx+sin3x=0 =2sin(5x+x2)cos(5xx2)+sin3x=0 =2sin3xcos2x+sin3x=0 sin3x(2cos2x+1)=0 sin3x=0=sin0 3x=0 x=0  \Rightarrow \sin 5x + \sin 3x + \sin x = 0 \\\ \Rightarrow \sin 5x + \sin x + \sin 3x = 0 \\\ = 2\sin \left( {\dfrac{{5x + x}}{2}} \right)\cos \left( {\dfrac{{5x - x}}{2}} \right) + \sin 3x = 0 \\\ = 2\sin 3x\cos 2x + \sin 3x = 0 \\\ \Rightarrow \sin 3x\left( {2\cos 2x + 1} \right) = 0 \\\ \Rightarrow \sin 3x = 0 = \sin 0 \\\ \Rightarrow 3x = 0 \\\ \therefore x = 0 \\\

But we have to find out xx other than zero

2cos2x+1=0 cos2x=12  \Rightarrow 2\cos 2x + 1 = 0 \\\ \Rightarrow \cos 2x = \dfrac{{ - 1}}{2} \\\

Now as we know 12\dfrac{{ - 1}}{2} is the value of cos(2π3)\cos \left( {\dfrac{{2\pi }}{3}} \right), cos(4π3)\cos \left( {\dfrac{{4\pi }}{3}} \right) and so on…..
So on comparing
2x=2π3, 4π3,.......2x = \dfrac{{2\pi }}{3},{\text{ }}\dfrac{{4\pi }}{3},.......
x=π3, 2π3\Rightarrow x = \dfrac{\pi }{3},{\text{ }}\dfrac{{2\pi }}{3},……..
Now according to question we have to find out the value of xx which is lie between 0<xπ20 < x \leqslant \dfrac{\pi }{2}
x=π3\Rightarrow x = \dfrac{\pi }{3}
Hence option (c) is correct.
Note- Whenever we face such types of problems, always remember some of the basic trigonometric identities which are stated above then using these properties to find out the solution of the given equation, we will get the required answer.