Question
Mathematics Question on Trigonometric Functions
If sin4A−cos2A=cos4A−sin2A(0<A<4π) then the value of tan 4A =
A
1
B
31
C
3
D
3+13−1
Answer
3
Explanation
Solution
Given sin4A−cos2A=cos4A−sin2A ⇒sin4A+sin2A=cos4A+cos2A ⇒2sin3AcosA=2cos3AcosA ⇒tan3A=1 (∵cosA=0) ⇒3A=4π⇒A=12π⇒4A=3π ⇒tan4A=tan3π=3