Solveeit Logo

Question

Question: If sinθ = 3sin(θ + 2α), then the value of tan (θ + α) + 2tanα is...

If sinθ = 3sin(θ + 2α), then the value of tan (θ + α) + 2tanα is

A

3

B

2

C

1

D

0

Answer

0

Explanation

Solution

Given that sin θ = 3sin (θ + 2α)

⇒ sin (θ + α − α) = 3sin (θ + α + α) ⇒ sin (θ +α)

cosα –cos(θ + α) sinα =3sin (θ + α) cosα + 3cos (θ + α) sinα ⇒ –2sin (θ + α) cosα = 4cos (θ + α) sinα

sin(θ+α)cos(θ+α)=2sinαcosα\frac{- \sin(\theta + \alpha)}{\cos(\theta + \alpha)} = \frac{2\sin\alpha}{\cos\alpha}⇒ tan(θ+α) + 2tanα = 0