Question
Question: If sin 37°=3/5, what is tan 16°...
If sin 37°=3/5, what is tan 16°
7/24
Solution
To find tan16∘ given sin37∘=3/5, we follow these steps:
-
Determine tan37∘:
Given sin37∘=3/5.
Using the Pythagorean identity sin2θ+cos2θ=1, we find cos37∘:
cos37∘=1−sin237∘=1−(3/5)2=1−9/25=16/25=4/5.
Now, calculate tan37∘:
tan37∘=cos37∘sin37∘=4/53/5=43. -
Determine tan53∘:
Notice that 16∘=53∘−37∘.
Since 37∘ and 53∘ are complementary angles (37∘+53∘=90∘), we have:
sin53∘=cos37∘=4/5
cos53∘=sin37∘=3/5
Now, calculate tan53∘:
tan53∘=cos53∘sin53∘=3/54/5=34. -
Apply the tangent difference formula:
Use the identity tan(A−B)=1+tanAtanBtanA−tanB.
Let A=53∘ and B=37∘.
tan16∘=tan(53∘−37∘)=1+tan53∘tan37∘tan53∘−tan37∘
Substitute the values of tan53∘=4/3 and tan37∘=3/4:
tan16∘=1+(34)(43)34−43
tan16∘=1+11216−9
tan16∘=2127
tan16∘=12×27
tan16∘=247