Solveeit Logo

Question

Question: If sin 37°=3/5, what is tan 16°...

If sin 37°=3/5, what is tan 16°

Answer

7/24

Explanation

Solution

To find tan16\tan 16^\circ given sin37=3/5\sin 37^\circ = 3/5, we follow these steps:

  1. Determine tan37\tan 37^\circ:
    Given sin37=3/5\sin 37^\circ = 3/5.
    Using the Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we find cos37\cos 37^\circ:
    cos37=1sin237=1(3/5)2=19/25=16/25=4/5\cos 37^\circ = \sqrt{1 - \sin^2 37^\circ} = \sqrt{1 - (3/5)^2} = \sqrt{1 - 9/25} = \sqrt{16/25} = 4/5.
    Now, calculate tan37\tan 37^\circ:
    tan37=sin37cos37=3/54/5=34\tan 37^\circ = \frac{\sin 37^\circ}{\cos 37^\circ} = \frac{3/5}{4/5} = \frac{3}{4}.

  2. Determine tan53\tan 53^\circ:
    Notice that 16=533716^\circ = 53^\circ - 37^\circ.
    Since 3737^\circ and 5353^\circ are complementary angles (37+53=9037^\circ + 53^\circ = 90^\circ), we have:
    sin53=cos37=4/5\sin 53^\circ = \cos 37^\circ = 4/5
    cos53=sin37=3/5\cos 53^\circ = \sin 37^\circ = 3/5
    Now, calculate tan53\tan 53^\circ:
    tan53=sin53cos53=4/53/5=43\tan 53^\circ = \frac{\sin 53^\circ}{\cos 53^\circ} = \frac{4/5}{3/5} = \frac{4}{3}.

  3. Apply the tangent difference formula:
    Use the identity tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.
    Let A=53A = 53^\circ and B=37B = 37^\circ.
    tan16=tan(5337)=tan53tan371+tan53tan37\tan 16^\circ = \tan(53^\circ - 37^\circ) = \frac{\tan 53^\circ - \tan 37^\circ}{1 + \tan 53^\circ \tan 37^\circ}
    Substitute the values of tan53=4/3\tan 53^\circ = 4/3 and tan37=3/4\tan 37^\circ = 3/4:
    tan16=43341+(43)(34)\tan 16^\circ = \frac{\frac{4}{3} - \frac{3}{4}}{1 + \left(\frac{4}{3}\right)\left(\frac{3}{4}\right)}
    tan16=169121+1\tan 16^\circ = \frac{\frac{16 - 9}{12}}{1 + 1}
    tan16=7122\tan 16^\circ = \frac{\frac{7}{12}}{2}
    tan16=712×2\tan 16^\circ = \frac{7}{12 \times 2}
    tan16=724\tan 16^\circ = \frac{7}{24}