Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sin3θ=Sinθsin \, 3 \,\theta\, = \, Sin \, \theta , how many solutions exist such that $-2 \pi

A

99

B

88

C

77

D

55

Answer

77

Explanation

Solution

We have, sin3θ=sinθ\sin 3 \theta=\sin \,\theta
sin3θsinθ=0\Rightarrow \sin 3 \theta-\sin \theta=0
2cos(3θ+θ2)sin(3θθ2)=0\Rightarrow 2 \cos \left(\frac{3 \theta+\theta}{2}\right) \sin \left(\frac{3 \theta-\theta}{2}\right)=0
cos2θsinθ=0\Rightarrow \cos 2 \theta \cdot \sin \theta=0
cos2θ=0\Rightarrow \cos 2 \theta=0
cos2θ=cos(π2) or sinθ=0,π,2π\Rightarrow \cos 2 \theta=\cos \left(\frac{\pi}{2}\right) \text { or } \sin \theta=0, \pi, 2 \pi
or θ=0,π=2π \theta=0, \pi=2 \pi
2θ=π2\Rightarrow 2 \theta=\frac{\pi}{2} or θ=0,π,2π \theta=0, \pi, 2 \pi
θ=nπ4\Rightarrow \theta=\frac{n \pi}{4} or θ=0,π,2π \theta=0, \pi, 2 \pi
$-2 \pi