Solveeit Logo

Question

Question: If \(\sin 3\theta = \cos \left( {\theta - {6^0}} \right)\), where \(3\theta \) and \(\left( {\theta ...

If sin3θ=cos(θ60)\sin 3\theta = \cos \left( {\theta - {6^0}} \right), where 3θ3\theta and (θ60)\left( {\theta - {6^0}} \right) are acute, find the value of θ\theta .

Explanation

Solution

Hint- Here, we will be using the trigonometric function sinϕ=cos(900ϕ)\sin \phi = \cos \left( {{{90}^0} - \phi } \right).

Given, sin3θ=cos(θ60) (1)\sin 3\theta = \cos \left( {\theta - {6^0}} \right){\text{ }} \to {\text{(1)}}
We know that sinϕ=cos(900ϕ)\sin \phi = \cos \left( {{{90}^0} - \phi } \right) where ϕ\phi is an acute angle.
As, 3θ3\theta is also acute angle so we can write sin3θ=cos(9003θ)\sin 3\theta = \cos \left( {{{90}^0} - 3\theta } \right)
Therefore, equation (1) becomes

cos(9003θ)=cos(θ60)9003θ=θ604θ=960 θ=240  \Rightarrow \cos \left( {{{90}^0} - 3\theta } \right) = \cos \left( {\theta - {6^0}} \right) \Rightarrow {90^0} - 3\theta = \theta - {6^0} \Rightarrow 4\theta = {96^0} \\\ \Rightarrow \theta = {24^0} \\\

Further also we have to check whether the angles 3θ3\theta and (θ60)\left( {\theta - {6^0}} \right) are
coming acute angles or not.
For θ=240\theta = {24^0}, 3θ=7203\theta = {72^0} and (θ60)=180\left( {\theta - {6^0}} \right) = {18^0}
That means both the angles are coming acute so θ=240\theta = {24^0} which is the required acute angle.

Note- In these types of problems, we convert both the LHS and the RHS of the given equation into one
trigonometric function and then compare the angles to solve for the unknown.