Question
Question: If \[\sin 2x = \dfrac{{2024}}{{2025}}\], where \[\dfrac{{5\pi }}{4} < x < \dfrac{{9\pi }}{4}\]. The ...
If sin2x=20252024, where 45π<x<49π. The value of sinx−cosx is equal to?
Solution
Here we use formula (a−b)2=a2+b2−2ab to open up the square of sinx−cosx. Put the value of sin2x in the expansion from the statement of the question and solve for the value using the trigonometric formulas. We check for the sign of the value obtained by converting sinx−cosx into a sine function using the formula for sin(A−B) and checking if it is positive or negative with the help of quadrant diagram.
- sin2x+cos2x=1
- 2sinxcosx=sin2x
*sin(A−B)=sinAcosB−sinBcosA
Complete step-by-step answer:
We are given sin2x=20252024.
We have to find the value of sinx−cosx.
We know (a−b)2=a2+b2−2ab.
Substitute the value of a=sinx,b=cosx
⇒(sinx−cosx)2=sin2x+cos2x−2sinxcosx
Use the trigonometric identity sin2x+cos2x=1 in the RHS of the equation.
⇒(sinx−cosx)2=1−2sinxcosx
Now substitute the value of 2sinxcosx=sin2x in the RHS of the equation.
⇒(sinx−cosx)2=1−sin2x
Substitute the value of sin2x=20252024 in the RHS of the equation.
⇒(sinx−cosx)2=1−20252024
Take LCM on the RHS of the equation.
⇒(sinx−cosx)2=20252025−2024
⇒(sinx−cosx)2=20251
We can write the value in the denominator as 2025=52×92
On calculation we get 2025=(9×5)2=(45)2
⇒(sinx−cosx)2=(45)21
Take square root on both sides of the equation
⇒(sinx−cosx)2=(45)21
Cancel square root by square power on both sides of the equation.
⇒sinx−cosx=±451
We have to find the sign of sinx−cosx
Let us multiply and divide the value sinx−cosxby 2.
⇒22(sinx−cosx)=2(sinx×21−cosx×21)
We substitute cos4π=21 and sin4π=21
⇒22(sinx−cosx)=2(sinx×cos4π−cosx×sin4π)
Use the formula sin(A−B)=sinAcosB−sinBcosA
⇒22(sinx−cosx)=2(sin(x−4π))
Now we are given the condition 45π<x<49π
Therefore subtract 4π from all values in the inequality 45π<x<49π
⇒45π−4π<x−4π<49π−4π
⇒44π<x−4π<48π
Cancel the same terms from numerator and denominator.
⇒π<x−4π<2π
Now apply sine function to values in the inequality
⇒sinπ<sin(x−4π)<sin2π
We see the quadrant diagram to check if sine is positive or negative in between π and 2π
Since, sine function is negative between π(180∘)and 2π(360∘)
⇒22(sinx−cosx)=2(sin(x−4π)) is a negative value.
Therefore, value of sinx−cosx=−451
Note: Students make mistake of writing the answer after removing the square root as 451, which is wrong because we have to take both the possibilities of negative and positive terms after removing square root from any value.
Also, keep in mind while checking the values from the quadrant diagram we move in an anticlockwise direction.