Solveeit Logo

Question

Question: If \(\sin 2\theta + \sin 2\varphi = \frac{1}{2}\) and \(\cos 2\theta + \cos 2\varphi = \frac{3}{2}\)...

If sin2θ+sin2φ=12\sin 2\theta + \sin 2\varphi = \frac{1}{2} and cos2θ+cos2φ=32\cos 2\theta + \cos 2\varphi = \frac{3}{2}, then

cos2(θφ)\cos^{2}(\theta - \varphi) equal to

A

38\frac{3}{8}

B

58\frac{5}{8}

C

34\frac{3}{4}

D

54\frac{5}{4}

Answer

58\frac{5}{8}

Explanation

Solution

Given, sin2θ+sin2φ=12\sin 2\theta + \sin 2\varphi = \frac{1}{2} .......(i)

and cos2θ+cos2φ=32\cos 2\theta + \cos 2\varphi = \frac{3}{2} .......(ii)

Squaring and adding,

$$$\sin 2\varphi + \cos 2\theta.\cos 2\varphi\rbrack = \frac{1}{4} + \frac{9}{4}$⇒ $\cos 2\theta.\cos 2\varphi + \sin 2\theta.\sin 2\varphi = \frac{1}{4}$ ⇒ $\cos(2\theta - 2\varphi) = \frac{1}{4}$ ⇒ $\cos^{2}(\theta - \varphi) = \frac{5}{8}$.