Solveeit Logo

Question

Question: If \[\sin 27^\circ = p\], then the value of \[\sqrt {1 + \sin 36^\circ } \]...

If sin27=p\sin 27^\circ = p, then the value of 1+sin36\sqrt {1 + \sin 36^\circ }

Explanation

Solution

Here, we will use the trigonometric identities of sum of sine and cosine function and solve it further to get the form of the expression that needs to be found out. We will then simplify the equation further using trigonometric identities to get the required value. Trigonometric equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true.

Formula Used:
We will use the following formulas:

  1. Trigonometric Identity: sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
  2. Trigonometric Identity: sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
  3. Trigonometric Identity: sinθ=sin(90x)\sin \theta = \sin \left( {90^\circ - x} \right)
  4. Trigonometric Identity: sin(90x)=cosx\sin \left( {90^\circ - x} \right) = \cos x
  5. Trigonometric Identity: sin(90+x)=cosx\sin \left( {90^\circ + x} \right) = \cos x
  6. Trigonometric Identity: cosx=1+sinx\cos x = \sqrt {1 + \sin x}

Complete step by step solution:
We are given that sin27=p\sin 27^\circ = p.
We know that (sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ{\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta .
By substituting the trigonometric identity sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta and sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, we get
(sinθ+cosθ)2=1+sin2θ\Rightarrow {\left( {\sin \theta + \cos \theta } \right)^2} = 1 + \sin 2\theta
By substituting the values of θ=27\theta = 27^\circ , we get
(sin27+cos27)2=1+sin(227)\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {2 \cdot 27} \right)^\circ
By multiplying the terms, we get
(sin27+cos27)2=1+sin54\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin 54^\circ
By using the trigonometric identity sin(90x)=cosx\sin \left( {90^\circ - x} \right) = \cos x, we get
(sin27+cos27)2=1+sin(9036)\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {90^\circ - 36^\circ } \right)
(sin27+cos27)2=1+cos36\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \cos 36^\circ
We know that cos36=1+54\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}
(sin27+cos27)2=1+1+54\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \dfrac{{1 + \sqrt 5 }}{4}
By taking the L.C.M, we get
(sin27+cos27)2=1×44+1+54\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} + \dfrac{{1 + \sqrt 5 }}{4}
(sin27+cos27)2=5+54\Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = \dfrac{{5 + \sqrt 5 }}{4}
Taking square root on both the sides, we get
(sin27+cos27)=5+54=1+cos36\Rightarrow \left( {\sin 27^\circ + \cos 27^\circ } \right) = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} = 1 + \cos 36^\circ ……………………………………………………….(1)\left( 1 \right)
By using the trigonometric identity, we get
(sinθcosθ)2=sin2θ+cos2θ2sinθcosθ\Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta - 2\sin \theta \cos \theta
By substituting the trigonometric identity, we get
(sinθcosθ)2=1sin2θ\Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = 1 - \sin 2\theta
By substituting the values of θ=27\theta = 27^\circ , we get
(sin27cos27)2=1sin227\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 2 \cdot 27^\circ
By multiplying the terms, we get
(sin27cos27)2=1sin54\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 54^\circ
By using the trigonometric identity, we get
(sin27cos27)2=1sin(9036)\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin \left( {90^\circ - 36^\circ } \right)
(sin27cos27)2=1cos36\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \cos 36^\circ
We know that cos36=1+54\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}
(sin27cos27)2=11+54\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \dfrac{{1 + \sqrt 5 }}{4}
(sin27cos27)2=1×441+54\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} - \dfrac{{1 + \sqrt 5 }}{4}
(sin27cos27)2=354\Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = \dfrac{{3 - \sqrt 5 }}{4}
Taking square root on both the sides, we get
(sin27cos27)=354=1cos36\Rightarrow \left( {\sin 27^\circ - \cos 27^\circ } \right) = \sqrt {\dfrac{{3 - \sqrt 5 }}{4}} = 1 - \cos 36^\circ………………………………………………..(2)\left( 2 \right)
By subtracting these equations, we get
1+cos361+cos36=5+54354\Rightarrow 1 + \cos 36^\circ - 1 + \cos 36^\circ = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} - \sqrt {\dfrac{{3 - \sqrt 5 }}{4}}
2cos36=12[5+535]\Rightarrow 2\cos 36^\circ = \dfrac{1}{2}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]
cos36=14[5+535]\Rightarrow \cos 36^\circ = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]
By using the trigonometric identity, we get
1+sin36=14[5+535]\Rightarrow \sqrt {1 + \sin 36^\circ } = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]

Therefore, the value of 1+sin36\sqrt {1 + \sin 36^\circ } is 14[5+535]\dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right].

Note:
We should know that we have many trigonometric identities which are related to all the other trigonometric equations. We should note that sine and tangent are odd functions since both the functions are symmetric about the origin. Cosine is an even function because the function is symmetric about the yy axis. So, we take the arguments in the negative sign for odd functions and positive signs for even functions.