Question
Question: If \[\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], where argument of \[\...
If sin25∘sin35∘sin85∘=acosx∘, where argument of cos is acute and positive, then find the value of (x+a).
Solution
Here, we need to find the value of the expression (x+a). We will simplify the given equation using trigonometric identities, such that the left hand side can be compared to the right hand side expression acosx∘, to obtain the values of x and a. Finally, we will use the values of x and a to find the value of the expression (x+a).
Formula Used: We will use the following formulas:
- The trigonometric identities sinAsinB=21[cos(A−B)−cos(A+B)] and sinAcosB=21[sin(A+B)+sin(A−B)].
- The cosine of any angle θ is equal to the cosine of the negative angle −θ, that is cosθ=cos(−θ).
- The sine and cosine of complementary angles is given by sin(90∘−θ)=cosθ.
- The sine of an acute angle θ can be written as sin(90∘+θ)=cosθ, because sine is positive in the second quadrant.
Complete step by step solution:
We will use trigonometric identities to simplify the left hand side of the given equation.
Using the trigonometric identity sinAsinB=21[cos(A−B)−cos(A+B)] to rewrite the expression sin25∘sin35∘, we get
⇒sin25∘sin35∘=21[cos(25∘−35∘)−cos(25∘+35∘)] ⇒sin25∘sin35∘=21[cos(−10∘)−cos(60∘)]
Using the identity, cosθ=cos(−θ), we get
cos(−10∘)=cos10∘
Substituting cos(−10∘)=cos10∘ in the equation sin25∘sin35∘=21[cos(−10∘)−cos(60∘)], we get
⇒sin25∘sin35∘=21[cos10∘−cos60∘]
The cosine of the angle measuring 60∘ is equal to 21.
Substituting cos60∘=21 in the equation sin25∘sin35∘=21[cos10∘−cos60∘], we get
⇒sin25∘sin35∘=21[cos10∘−21]
Simplifying the expression using the distributive law of multiplication, we get
⇒sin25∘sin35∘=21cos10∘−41
Now, substituting sin25∘sin35∘=21cos10∘−41 in the equation sin25∘sin35∘sin85∘=acosx∘, we get
⇒(21cos10∘−41)sin85∘=acosx∘ ⇒21cos10∘sin85∘−41sin85∘=acosx∘
We know that sinAcosB=21[sin(A+B)+sin(A−B)].
Using the trigonometric identity sinAcosB=21[sin(A+B)+sin(A−B)] to rewrite the expression cos10∘sin85∘, we get
⇒sin85∘cos10∘=21[sin(85∘+10∘)+sin(85∘−10∘)] ⇒sin85∘cos10∘=21[sin95∘+sin75∘]
Simplifying the expression, we get
⇒cos10∘sin85∘=21sin95∘+21sin75∘
Substituting cos10∘sin85∘=21sin95∘+21sin75∘ in the equation 21cos10∘sin85∘−41sin85∘=acosx∘, we get
⇒21(21sin95∘+21sin75∘)−41sin85∘=acosx∘
Multiplying the terms, we get
⇒41sin95∘+41sin75∘−41sin85∘=acosx∘
Rewriting the expression, we get
⇒41sin(90∘+5∘)+41sin(90∘−15∘)−41sin(90∘−5∘)=acosx∘
Now, we know that the sine and cosine of complementary angles is given by sin(90∘−θ)=cosθ.
The sine of an acute angle θ can be written as sin(90∘+θ)=cosθ, because sine is positive in the second quadrant.
Using the trigonometric identities sin(90∘−θ)=cosθ and sin(90∘+θ)=cosθ in the equation, we get
⇒41cos5∘+41cos15∘−41cos5∘=acosx∘
Subtracting the like terms, we get
⇒41cos15∘=acosx∘ ⇒4cos15∘=acosx∘
Comparing the terms on both the sides of the equation, we get
x=15 and 4=a
Now, we can find the value of the expression (x+a).
Substituting x=15 and a=4 in the expression, we get
x+a=15+4=19
Therefore, we get the value of the expression (x+a) as 19.
Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that a(b+c)=a⋅b+a⋅c.
The identity sinAsinB=21[cos(A−B)−cos(A+B)] is obtained by rewriting the trigonometric identity cos(A+B)−cos(A−B)=−2sinAsinB.
The identity sinAcosB=21[sin(A+B)+sin(A−B)] is obtained by rewriting the trigonometric identity sin(A+B)+sin(A−B)=2sinAcosB.