Solveeit Logo

Question

Question: If \[\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], where argument of \[\...

If sin25sin35sin85=cosxa\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}, where argument of cos\cos is acute and positive, then find the value of (x+a)\left( {x + a} \right).

Explanation

Solution

Here, we need to find the value of the expression (x+a)\left( {x + a} \right). We will simplify the given equation using trigonometric identities, such that the left hand side can be compared to the right hand side expression cosxa\dfrac{{\cos x^\circ }}{a}, to obtain the values of xx and aa. Finally, we will use the values of xx and aa to find the value of the expression (x+a)\left( {x + a} \right).

Formula Used: We will use the following formulas:

  1. The trigonometric identities sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right] and sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right].
  2. The cosine of any angle θ\theta is equal to the cosine of the negative angle θ- \theta, that is cosθ=cos(θ)\cos \theta = \cos \left( { - \theta } \right).
  3. The sine and cosine of complementary angles is given by sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta .
  4. The sine of an acute angle θ\theta can be written as sin(90+θ)=cosθ\sin \left( {90^\circ + \theta } \right) = \cos \theta , because sine is positive in the second quadrant.

Complete step by step solution:
We will use trigonometric identities to simplify the left hand side of the given equation.
Using the trigonometric identity sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right] to rewrite the expression sin25sin35\sin 25^\circ \sin 35^\circ , we get
sin25sin35=12[cos(2535)cos(25+35)] sin25sin35=12[cos(10)cos(60)]\begin{array}{l} \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( {25^\circ - 35^\circ } \right) - \cos \left( {25^\circ + 35^\circ } \right)} \right]\\\ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\end{array}
Using the identity, cosθ=cos(θ)\cos \theta = \cos \left( { - \theta } \right), we get
cos(10)=cos10\cos \left( { - 10^\circ } \right) = \cos 10^\circ
Substituting cos(10)=cos10\cos \left( { - 10^\circ } \right) = \cos 10^\circ in the equation sin25sin35=12[cos(10)cos(60)]\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right], we get
sin25sin35=12[cos10cos60]\Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right]
The cosine of the angle measuring 6060^\circ is equal to 12\dfrac{1}{2}.
Substituting cos60=12\cos 60^\circ = \dfrac{1}{2} in the equation sin25sin35=12[cos10cos60]\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right], we get
sin25sin35=12[cos1012]\Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \dfrac{1}{2}} \right]
Simplifying the expression using the distributive law of multiplication, we get
sin25sin35=12cos1014\Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}
Now, substituting sin25sin35=12cos1014\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4} in the equation sin25sin35sin85=cosxa\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}, we get
(12cos1014)sin85=cosxa 12cos10sin8514sin85=cosxa\begin{array}{l} \Rightarrow \left( {\dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}} \right)\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\\\ \Rightarrow \dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\end{array}
We know that sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right].
Using the trigonometric identity sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right] to rewrite the expression cos10sin85\cos 10^\circ \sin 85^\circ , we get
sin85cos10=12[sin(85+10)+sin(8510)] sin85cos10=12[sin95+sin75]\begin{array}{l} \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin \left( {85^\circ + 10^\circ } \right) + \sin \left( {85^\circ - 10^\circ } \right)} \right]\\\ \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin 95^\circ + \sin 75^\circ } \right]\end{array}
Simplifying the expression, we get
cos10sin85=12sin95+12sin75\Rightarrow \cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ
Substituting cos10sin85=12sin95+12sin75\cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ in the equation 12cos10sin8514sin85=cosxa\dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}, we get
12(12sin95+12sin75)14sin85=cosxa\Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ } \right) - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}
Multiplying the terms, we get
14sin95+14sin7514sin85=cosxa\Rightarrow \dfrac{1}{4}\sin 95^\circ + \dfrac{1}{4}\sin 75^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}
Rewriting the expression, we get
14sin(90+5)+14sin(9015)14sin(905)=cosxa\Rightarrow \dfrac{1}{4}\sin \left( {90^\circ + 5^\circ } \right) + \dfrac{1}{4}\sin \left( {90^\circ - 15^\circ } \right) - \dfrac{1}{4}\sin \left( {90^\circ - 5^\circ } \right) = \dfrac{{\cos x^\circ }}{a}
Now, we know that the sine and cosine of complementary angles is given by sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta .
The sine of an acute angle θ\theta can be written as sin(90+θ)=cosθ\sin \left( {90^\circ + \theta } \right) = \cos \theta , because sine is positive in the second quadrant.
Using the trigonometric identities sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta and sin(90+θ)=cosθ\sin \left( {90^\circ + \theta } \right) = \cos \theta in the equation, we get
14cos5+14cos1514cos5=cosxa\Rightarrow \dfrac{1}{4}\cos 5^\circ + \dfrac{1}{4}\cos 15^\circ - \dfrac{1}{4}\cos 5^\circ = \dfrac{{\cos x^\circ }}{a}
Subtracting the like terms, we get
14cos15=cosxa cos154=cosxa\begin{array}{l} \Rightarrow \dfrac{1}{4}\cos 15^\circ = \dfrac{{\cos x^\circ }}{a}\\\ \Rightarrow \dfrac{{\cos 15^\circ }}{4} = \dfrac{{\cos x^\circ }}{a}\end{array}
Comparing the terms on both the sides of the equation, we get
x=15x = 15 and 4=a4 = a
Now, we can find the value of the expression (x+a)\left( {x + a} \right).
Substituting x=15x = 15 and a=4a = 4 in the expression, we get
x+a=15+4=19x + a = 15 + 4 = 19
Therefore, we get the value of the expression (x+a)\left( {x + a} \right) as 19.

Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that a(b+c)=ab+aca\left( {b + c} \right) = a \cdot b + a \cdot c.
The identity sinAsinB=12[cos(AB)cos(A+B)]\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right] is obtained by rewriting the trigonometric identity cos(A+B)cos(AB)=2sinAsinB\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin A\sin B.
The identity sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right] is obtained by rewriting the trigonometric identity sin(A+B)+sin(AB)=2sinAcosB\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B.