Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If sin2θ+sin2ϕ=1/2,cos2+cos2ϕ=3/2\sin^2 \theta + \sin^2 \phi = 1/2, \cos^2 + \cos^2 \phi = 3/2, then cos2(θϕ)\cos^2 (\theta - \phi) is equal to

A

44628

B

44689

C

44624

D

44685

Answer

44689

Explanation

Solution

Using cosine formula
2sin(θ+ϕ)cos(θϕ)=1/22 \sin (\theta + \phi) \cos (\theta - \phi) = 1/2 ......(i)
2cos(θ+ϕ)cos(θϕ)=3/22 \cos (\theta + \phi) \cos (\theta - \phi) = 3/2 .....(ii)
Squaring (1) and (2) and then adding
4cos2(θϕ)=14+94=524 \cos^{2} \left(\theta - \phi\right) = \frac{1}{4} + \frac{9}{4} = \frac{5}{2}
cos2(θϕ)=58\Rightarrow \cos^{2} \left(\theta -\phi\right) = \frac{5}{8}