Solveeit Logo

Question

Question: If \( {\sin ^2}A = x \) , then \( \sin A\sin 2A\sin 3A\sin 4A \) is a polynomial in \( x \) , the su...

If sin2A=x{\sin ^2}A = x , then sinAsin2Asin3Asin4A\sin A\sin 2A\sin 3A\sin 4A is a polynomial in xx , the sum of whose coefficient is
a. 0
b. 40
c. 168
d. 336

Explanation

Solution

Hint : Here in this question first we multiply the sinAsin2Asin3Asin4A\sin A\sin 2A\sin 3A\sin 4A and then we are going to substitute the needed values to the equation and we are adding the coefficient of the equation and hence we obtain the required result.

Complete step-by-step answer :
Now consider the polynomial sinAsin2Asin3Asin4A\sin A\sin 2A\sin 3A\sin 4A
Where sin2A=2sinA.cosA\sin 2A = 2\sin A.\cos A , sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4{\sin ^3}A and
sin4A=sin(3A+A)\sin 4A = \sin (3A + A)
Now we apply the formula sin(A+B)=sinA.cosB+cosA.sinB\sin (A + B) = \sin A.\cos B + \cos A.\sin B we have
sin4A=sin3A.cosA+cos3A.sinA\Rightarrow \sin 4A = \sin 3A.\cos A + \cos 3A.\sin A
And by applying the formula sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4{\sin ^3}A and cos3A=4cos3A3cosA\cos 3A = 4{\cos ^3}A - 3\cos A , hence we have sin4A=(3sinA4sin3A).cosA+(4cos3A3cosA).sinA\Rightarrow \sin 4A = (3\sin A - 4{\sin ^3}A).\cos A + (4{\cos ^3}A - 3\cos A).\sin A
sin4A=(3sinAcosA4sin3AcosA)+(4cos3AsinA3cosAsinA)\Rightarrow \sin 4A = (3\sin A\cos A - 4{\sin ^3}A\cos A) + (4{\cos ^3}A\sin A - 3\cos A\sin A)
On simplification
sin4A=4cos3AsinA4sin3AcosA\Rightarrow \sin 4A = 4{\cos ^3}A\sin A - 4{\sin ^3}A\cos A
Now we will substitute all the values in the polynomial we have
sinAsin2Asin3Asin4A=sinA(2sinAcosA)(3sinA4sin3A)(4cos3AsinA4sin3AcosA)\sin A\sin 2A\sin 3A\sin 4A = \sin A(2\sin A\cos A)(3\sin A - 4{\sin ^3}A)(4{\cos ^3}A\sin A - 4{\sin ^3}A\cos A)
On multiplying the first two terms we have
sinAsin2Asin3Asin4A=(2sin2AcosA)(3sinA4sin3A)(4cos3AsinA4sin3AcosA)\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = (2{\sin ^2}A\cos A)(3\sin A - 4{\sin ^3}A)(4{\cos ^3}A\sin A - 4{\sin ^3}A\cos A)
Multiply the first two terms of the above equation
sinAsin2Asin3Asin4A=(6sin3AcosA8sin5AcosA)(4cos3AsinA4sin3AcosA)\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = (6{\sin ^3}A\cos A - 8{\sin ^5}A\cos A)(4{\cos ^3}A\sin A - 4{\sin ^3}A\cos A)
On further simplification we have
sinAsin2Asin3Asin4A=24sin4Acos4A24sin6Acos2A32sin6Acos4A+32sin8Acos2A\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{\sin ^4}A{\cos ^4}A - 24{\sin ^6}A{\cos ^2}A - 32{\sin ^6}A{\cos ^4}A + 32{\sin ^8}A{\cos ^2}A
By the data we have sin2A=x{\sin ^2}A = x applying the square root we have
sinA=±x\sin A = \pm x
We know the standard trigonometric equation that is sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 , this can be written as cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x . As we know the value of the sin2A=x{\sin ^2}A = x and using the standard trigonometric equations we can write as cos2A=1x{\cos ^2}A = 1 - x .
Now consider the polynomial that is sinAsin2Asin3Asin4A=24sin4Acos4A24sin6Acos2A32sin6Acos4A+32sin8Acos2A\sin A\sin 2A\sin 3A\sin 4A = 24{\sin ^4}A{\cos ^4}A - 24{\sin ^6}A{\cos ^2}A - 32{\sin ^6}A{\cos ^4}A + 32{\sin ^8}A{\cos ^2}A
Substituting the values, we have
sinAsin2Asin3Asin4A=24(x)4(1x)224(x)6(1x)32(x)6(1x)2+32(x)8(1x)\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{(x)^4}{(1 - x)^2} - 24{(x)^6}(1 - x) - 32{(x)^6}{(1 - x)^2} + 32{(x)^8}(1 - x)
Here we use (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2} to the (1x)2{(1 - x)^2}
Hence, we have
sinAsin2Asin3Asin4A=24x4(12x+x2)24x6(1x)32x6(12x+x2)+32x8(1x)\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{x^4}(1 - 2x + {x^2}) - 24{x^6}(1 - x) - 32{x^6}(1 - 2x + {x^2}) + 32{x^8}(1 - x)
On further simplification
sinAsin2Asin3Asin4A=24x448x5+24x624x6+24x732x6+64x732x8+32x832x9\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{x^4} - 48{x^5} + 24{x^6} - 24{x^6} + 24{x^7} - 32{x^6} + 64{x^7} - 32{x^8} + 32{x^8} - 32{x^9}
Cancelling some terms
sinAsin2Asin3Asin4A=24x448x5+24x732x6+64x732x9\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{x^4} - 48{x^5} + 24{x^7} - 32{x^6} + 64{x^7} - 32{x^9}
Adding the terms which are having same power raised to x,
sinAsin2Asin3Asin4A=24x448x5+88x732x632x9\Rightarrow \sin A\sin 2A\sin 3A\sin 4A = 24{x^4} - 48{x^5} + 88{x^7} - 32{x^6} - 32{x^9}
Now we have to the only coefficient of the polynomial, here we have the 24, -48, 88, -32 and -32
Now we add the coefficients 2448+88323224 - 48 + 88 - 32 - 32
We will add 24 and -48
24+883232\Rightarrow - 24 + 88 - 32 - 32
Now we will add -24 and 88
643232\Rightarrow 64 - 32 - 32
Now we will add 64 and -32
3232=0\Rightarrow 32 - 32 = 0 and hence we have 0 has the sum of coefficients of the polynomial.
So, the correct answer is “Option a”.

Note : We must know about the trigonometry formulas and conditions and we should multiply the term very carefully. Since the polynomial contains four terms if we go wrong in any one of the steps, we may not be able to obtain the correct solution for the question.