Solveeit Logo

Question

Question: If $\sin^{-1}\sqrt{x^2+2x+1} + \sec^{-1}\sqrt{x^2+2x+1} = \frac{\pi}{2}, x \neq 0$, then the value o...

If sin1x2+2x+1+sec1x2+2x+1=π2,x0\sin^{-1}\sqrt{x^2+2x+1} + \sec^{-1}\sqrt{x^2+2x+1} = \frac{\pi}{2}, x \neq 0, then the value of 2sec1x2+sin1x2=2\sec^{-1}\frac{x}{2} + \sin^{-1}\frac{x}{2} =

A

3π2\frac{3\pi}{2}

Answer

3π2\frac{3\pi}{2}

Explanation

Solution

The given equation is sin1x2+2x+1+sec1x2+2x+1=π2\sin^{-1}\sqrt{x^2+2x+1} + \sec^{-1}\sqrt{x^2+2x+1} = \frac{\pi}{2}.

First, simplify the term inside the square root: x2+2x+1=(x+1)2=x+1\sqrt{x^2+2x+1} = \sqrt{(x+1)^2} = |x+1|.

Let y=x+1y = |x+1|. The equation becomes sin1y+sec1y=π2\sin^{-1}y + \sec^{-1}y = \frac{\pi}{2}.

For this equation to be defined, yy must be in the intersection of the domains of sin1\sin^{-1} and sec1\sec^{-1}.

The domain of sin1y\sin^{-1}y is [1,1][-1, 1].

The domain of sec1y\sec^{-1}y is (,1][1,)(-\infty, -1] \cup [1, \infty).

The intersection of these domains is [1,1]((,1][1,))={1,1}[-1, 1] \cap ((-\infty, -1] \cup [1, \infty)) = \{-1, 1\}.

So, yy must be either 1-1 or 11.

Since y=x+10y = |x+1| \ge 0, we must have y=1y=1.

Thus, x+1=1|x+1| = 1.

This gives two possibilities: x+1=1x+1 = 1 or x+1=1x+1 = -1.

If x+1=1x+1 = 1, then x=0x = 0.

If x+1=1x+1 = -1, then x=2x = -2.

The problem states that x0x \neq 0. Therefore, we must have x=2x = -2.

Now we need to find the value of the expression 2sec1x2+sin1x22\sec^{-1}\frac{x}{2} + \sin^{-1}\frac{x}{2} for x=2x=-2.

Substitute x=2x=-2 into the expression:

2sec122+sin122=2sec1(1)+sin1(1)2\sec^{-1}\frac{-2}{2} + \sin^{-1}\frac{-2}{2} = 2\sec^{-1}(-1) + \sin^{-1}(-1).

We need to find the values of sec1(1)\sec^{-1}(-1) and sin1(1)\sin^{-1}(-1).

For sin1(1)\sin^{-1}(-1): The principal value of sin1z\sin^{-1}z is in the range [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. We are looking for an angle θ[π2,π2]\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}] such that sinθ=1\sin\theta = -1. This angle is θ=π2\theta = -\frac{\pi}{2}. So, sin1(1)=π2\sin^{-1}(-1) = -\frac{\pi}{2}.

For sec1(1)\sec^{-1}(-1): The principal value of sec1z\sec^{-1}z is in the range [0,π]{π2}[0, \pi] \setminus \{\frac{\pi}{2}\}. We are looking for an angle ϕ[0,π]{π2}\phi \in [0, \pi] \setminus \{\frac{\pi}{2}\} such that secϕ=1\sec\phi = -1. Since secϕ=1cosϕ\sec\phi = \frac{1}{\cos\phi}, we have 1cosϕ=1\frac{1}{\cos\phi} = -1, which means cosϕ=1\cos\phi = -1. The angle in the range [0,π][0, \pi] with cosϕ=1\cos\phi = -1 is ϕ=π\phi = \pi. So, sec1(1)=π\sec^{-1}(-1) = \pi.

Now substitute these values into the expression:

2sec1(1)+sin1(1)=2(π)+(π2)=2ππ2=4ππ2=3π22\sec^{-1}(-1) + \sin^{-1}(-1) = 2(\pi) + (-\frac{\pi}{2}) = 2\pi - \frac{\pi}{2} = \frac{4\pi - \pi}{2} = \frac{3\pi}{2}.

The value of the expression is 3π2\frac{3\pi}{2}.